Skip to main content
Log in

Cognition Enhancers in Age-Related Cognitive Decline

  • Review Article
  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

A review of recently published studies on the effect of cognition enhancers in non-demented human study participants is presented. The heterogeneity of the therapeutic target, age-associated cognitive decline, can be improved by separately treating groups in whom age-extrinsic factors may underlie cognitive pathology. Standardisation of cognitive assessments is necessary, since many different tests are applied to answer the same question. Modelling cognitive dysfunction, either by pharmacological or nonpharmacological means, in humans is highly recommended since it allows hypotheses to be tested in a clearly operationalised way. Predictive validity of the currently applied models for the clinical situation remains a problem, however. The scopolamine (hyoscine) model has, to a reasonable extent, predictive validity for the cholinergic agents.

The results of 67 single-dose studies and 30 multiple-dose studies are summarised. All single-dose studies and 14 multiple-dose studies were carried out in young or elderly human volunteers. In 45 of 81 volunteer studies, models of cognitive dysfunction were employed. The scopolamine model was the most used (n = 21); the other studies induced cognitive dysfunction by means of benzodiazepines (8), hypoxia (7), alcohol (5) and sleep-deprivation (4). The remaining 16 multiple-dose studies were clinical trials of a duration varying between 2 weeks and 1 year (average duration was 14 weeks). In these trials, the effects of cognition enhancers were assessed in elderly people in whom impairment of memory, psychomotor performance or cognitive function was determined. These included age-associated memory impairment (AAMI) and age-associated cognitive decline (AACD).

There were many studies in which the cognition enhancing properties of substances in humans were reliably demonstrated. The cognition enhancing properties of substances that are widely used, such as caffeine, nicotine and vitamins, may already be active against AACD. New developments such as serotonin (5-hydroxytryptamine3; 5-HT3) antagonists and N-methyl-D-aspartate (NMDA) antagonists have provided marginal and disappointing results in AAMI. There is no cognition enhancer that has reliably and repeatedly been demonstrated to be efficacious for the treatment of AACD. However, this situation may change as the selectivity, specificity and adverse effect profiles of substances that are being developed for the treatment of AD may be expected to be improved in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charness N, editor. Aging and human performance. Waterloo, Canada: John Wiley & Sons, 1985

    Google Scholar 

  2. Birren JE, Warner Schaie K, editors. Handbook of the psychology of aging. 3rd ed. New York: Van Nostrand Reinhold Company, 1990

    Google Scholar 

  3. LaRue A. Aging and Neuropsychological Assessment. New York: Plenum Press, 1992

    Google Scholar 

  4. Jolles J, Verhey FRJ, Riedel WJ, et al. Cognitive impairment in elderly people: predisposing factors and implications for experimental drug studies. Drugs Aging 1995; 7: 459–79

    PubMed  CAS  Google Scholar 

  5. Masur DM, Sliwinski M, Lipton RB, et al. Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology 1994; 44: 1427–32

    PubMed  CAS  Google Scholar 

  6. McEntee WJ, Crook TH. Age-associated memory impairment: a role for catecholamines. Neurology 1990; 40: 526–30

    PubMed  CAS  Google Scholar 

  7. Pepeu G. Memory disorders: novel treatments, clinical perspective. Life Sci 1994; 55: 2189–94

    PubMed  CAS  Google Scholar 

  8. O’Brien JT, Levy R. Age associated memory impairment. BMJ 1992; 304: 5–6

    PubMed  Google Scholar 

  9. Ban TA. Psychopharmacology and succesful cerebral aging. Prog Neuropsych Biol Psychiatry 1994; 19: 1–9

    Google Scholar 

  10. Michel B, Sambuc R, Scotto JC. French recommendations for clinical drug trials in cognitive disorders of the elderly. Int J Geriatr Psychiatry 1994; 9: 823–8

    Google Scholar 

  11. Frostl W, Maitre L. The families of cognition enhancers. Pharmacopsychiatry 1989; 2: 54–100

    Google Scholar 

  12. Sarter M, Hagan J, Dudchenko P. Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part I. Psychopharmacology 1992; 107: 144–59

    PubMed  CAS  Google Scholar 

  13. Cacabelos R, Nordberg A, Caamano J, et al. Molecular strategies for the first generations of antidementia drugs (1). Tacrine and related compounds. Drugs Today 1994; 30: 295–337

    CAS  Google Scholar 

  14. Porsolt RD. Strategies in psychopharmacology: cognition enhancers — from animals to man: concluding remarks. Pharmacopsychiatry 1990; 23: 99–100

    Google Scholar 

  15. Schwartz G, Bisserbe JC, Bradford D, et al. Late clinical testing of cognition enhancers: demonstration of efficacy. Pharmacopsychiatry 1990; 2: 60–2

    Google Scholar 

  16. Müller WE, Pedigo NW. Brain aging: a risk factor of neurodegenerative disorders and a target for therapeutic intervention. Life Sci 1994; 55: 1975–6

    PubMed  Google Scholar 

  17. Caine ED. Should aging-associated cognitive decline be included in DSM-IV? J Neuropsychiatry Clin Neurosci 1993; 5: 1–5

    PubMed  CAS  Google Scholar 

  18. Giurgea CE. The ‘nootropic’ approach to the pharmacology of the integrative activity of the brain. Conditional Reflex 1973; 8: 108–15

    PubMed  CAS  Google Scholar 

  19. Gouliaev AH, Senning A. Piracetam and other structurally related nootropics. Brain Res Brain Res Rev 1994; 19: 180–222

    PubMed  CAS  Google Scholar 

  20. Sarter M, Hagan J, Dudchenko P. Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part II. Psychopharmacology 1992; 107: 461–73

    PubMed  CAS  Google Scholar 

  21. Giacobini E, Becker R, editor. Alzheimer’s disease: therapeutic strategies. Basel: Birkhäuser Verlag AG, 1994

    Google Scholar 

  22. Kral VA. Senescent forgetfulness: benign and malignant. Can Med Assoc J 1962; 86: 257–60

    PubMed  CAS  Google Scholar 

  23. Crook T, Bartus RT, Ferris SH, et al. Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change. Report of a National Institute of Mental Health work group. Dev Neuropsychol 1986; 2: 261–76

    Google Scholar 

  24. Blackford RC, LaRue A. Criteria for diagnosing age-associated memory impairment: proposed improvements from the field. Dev Neuropsychol 1989; 5: 295–306

    Google Scholar 

  25. Bamford KA, Caine ED. Does ‘benign senescent forgetfulness’ exist? Clin Geriatr Med 1988; 4: 897–916

    PubMed  CAS  Google Scholar 

  26. Tritsmans L, Clincke G, Peelmans B. Does AAMI constitute a real disease entity? A placebo-controlled double-blind study with sabeluzole (R58 735) in a patient population with real memory problems. Drug Dev Res 1990; 20: 473–82

    Google Scholar 

  27. Rosen TJ. ‘Age-associated memory impairment’: a critique. Special issue: cognitive gerontology. Eur J Cogn Psychol 1990; 2: 275–87

    Google Scholar 

  28. Smith G, Ivnik RJ, Petersen RC, et al. Age-associated memory impairment diagnosis: problems of reliability and concerns for terminology. Psychol Aging 1991; 6: 551–8

    PubMed  Google Scholar 

  29. Abate G, Angeleri F, Bartorelli L, et al. Epidemiologic study on the effectiveness and safety of dihydroergocristine in impaired memory and behavioral functions in aged humans. Arzneimittelforschung 1992; 42: 1417–21

    PubMed  CAS  Google Scholar 

  30. Clincke GH, Tritsmans L, Peelmans B. Long-term follow-up treatment with sabeluzole in elderly patients with pronounced memory problems of unknown origin. Drug Dev Res 1991; 23: 301–5

    Google Scholar 

  31. Schmidt U, Brendemuhl D, Engels K, et al. Piracetam in elderly motorists. Pharmacopsychiatry 1991; 24: 121–6

    PubMed  CAS  Google Scholar 

  32. Riedel WJ. Cognition enhancing drugs, cholinergic function and age-related decline. Maastricht: Neuropsych Publishers, 1995

    Google Scholar 

  33. Hijman R, Jolies J, Verhoeven WMA, et al. Desglycinamide-(Arg(8))-vasopressin in five trials with memory-disturbed patients. Hum Psychopharmacol 1992; 7: 7–23

    CAS  Google Scholar 

  34. Marini G, Caratti C, Peluffo F. Placebo-controlled double-blind study of pramiracetam (CI-879) in the treatment of elderly subjects with memory impairment. Adv Ther 1992; 9: 136–46

    Google Scholar 

  35. Fioravanti M, Bergamasco B, Bocola V, et al. A multicentre, double-blind, controlled study of piracetam vs placebo in geriatric patients with nonvascular mild-moderate impairment in cognition. New Trends Clin Neuropharmacol 1991; V: 27–34

    Google Scholar 

  36. Rai GS, Shovlin C, Wesnes KA. A double-blind, placebo controlled study of Ginkgo biloba extract (‘tanakan’) in elderly outpatients with mild to moderate memory impairment. Curr Med Res Opin 1991; 12: 350–5

    PubMed  CAS  Google Scholar 

  37. Gamzu ER, Birkhimer LJ, Hoover T, et al. Early human trials in the assessment of cognition activators. Pharmacopsychiatry 1990; 2: 44–8

    Google Scholar 

  38. Hall ST, Puech A, Schaffler K, et al. Early clinical testing of cognition enhancers: prediction of efficacy. Pharmacopsychiatry 1990; 2: 57–8

    Google Scholar 

  39. Porsolt RD. Strategies in psychopharmacology: cognition enhancers — from animals to man [preface]. Pharmacopsychiatry 1990; 23: 29–30

    Google Scholar 

  40. Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408–17

    PubMed  CAS  Google Scholar 

  41. Bartus RT, Dean RL, Pontecorvo MJ, et al. The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann NY Acad Sci 1985; 444: 332–58

    PubMed  CAS  Google Scholar 

  42. Drachman D, Leavitt J. Human memory and the cholinergic system: a relationship to aging? Arch Neurol 1974; 30: 113–21

    PubMed  CAS  Google Scholar 

  43. Drachman D, Sahakian B. The effects of cholinergic agents on human learning and memory. In: Bareau A, Growdon J, Wurtman R, editors. Nutrition and the brain. New York: Raven Press, 1979: 351–66

    Google Scholar 

  44. Kopelman MD. The cholinergic neurotransmitter system in human memory and dementia: a review. Q J Exp Psychol A 1986; 38: 535–73

    PubMed  CAS  Google Scholar 

  45. Kopelman MD, Corn TH. Cholinergic ‘blockade’ as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 1988; 111: 1079–110

    PubMed  Google Scholar 

  46. Molchan SE, Martinez RA, Hill JL, et al. Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Rev 1992; 17: 215–26

    PubMed  CAS  Google Scholar 

  47. Wesnes K, Warburton DM. Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology 1984; 82: 147–50

    PubMed  CAS  Google Scholar 

  48. Wesnes K, Revell A. The separate and combined effects of scopolamine and nicotine on human information processing. Psychopharmacology 1984; 84: 5–11

    PubMed  CAS  Google Scholar 

  49. Wesnes K, Simpson PM, Kidd A. The use of a scopolamine model to study the nootropic effects of tenilsetam (CAS 997) in man. Med Sci Res Psychol Psychiatry 1987; 15: 1063–4

    CAS  Google Scholar 

  50. Preston GC, Ward C, Lines CR, et al. Scopolamine and benzodiazepine models of dementia: cross-reversals by Ro 15-1788 and physostigmine. Psychopharmacology 1989; 98: 487–94

    PubMed  CAS  Google Scholar 

  51. Nuotto E. Psychomotor, physiological and cognitive effects of scopolamine and ephedrine in healthy man. Eur J Clin Pharmacol 1983; 24: 603–9

    PubMed  CAS  Google Scholar 

  52. Schmedtje JJ, Oman CM, Letz R, et al. Effects of scopolamine and dextroamphetamine on human performance. Aviat Space Environ Med 1988; 59: 407–10

    PubMed  CAS  Google Scholar 

  53. Meador KJ, Loring DW, Lee GP, et al. In vivo probe of central cholinergic systems. J Gerontol 1988; 43: M158–62

    PubMed  CAS  Google Scholar 

  54. Kennedy RS, Odenheimer RC, Baltzley DR, et al. Differential effects of scopolamine and amphetamine on microcomputer-based performance tests. Aviat Space Environ Med 1990; 61: 615–21

    PubMed  CAS  Google Scholar 

  55. Lister RG. The amnesic action of benzodiazepines in man. Neurosci Biobehav Rev 1985; 9: 87–94

    PubMed  CAS  Google Scholar 

  56. Sarter M, Stephens DN. Beta-carbolines as tools in memory research: animal data and speculations. Psychopharmacol Ser 1988; 6: 230–45

    PubMed  CAS  Google Scholar 

  57. Sarter M, Schneider HH, Stephens DN. Treatment strategies for senile dementia: antagonist β-carbolines. Trends Neurosci 1988; 11: 13–7

    PubMed  CAS  Google Scholar 

  58. Lister RG. The effects of benzodiazepines and 5-HT1a agonists on learning and memory. In: Rodgers RJ, Cooper SJ, editors. 5-HT1a agonists, 5-HT3 antagonists and benzodiazepines. Chichester: Wiley, 1991: 267–80

    Google Scholar 

  59. Bahrke MS, Shukitt HB. Effects of altitude on mood, behaviour and cognitive functioning: a review. Sports Med 1993; 16: 97–125

    PubMed  CAS  Google Scholar 

  60. Kraaier V, Van Huffelen AC, Wieneke GH. The hyperventilation-induced ischaemia model in human neuropharmacology: neurophysiological and psychometric studies of aniracetam and 3-OH aniracetam. Eur J Clin Pharmacol 1989; 36: 605–11

    PubMed  CAS  Google Scholar 

  61. Saletu B, Grünberger J. The hypoxia model in human psychopharmacology: neuropsychological and psychometric studies with aniracetam. Hum Neurobiol 1984; 3: 171–81

    PubMed  CAS  Google Scholar 

  62. Weinachter SN, Blavet N, O’Donnell RA, et al. Models of hypoxia and cerebral ischemia. Pharmacopsychiatry 1990; 2: 94–7

    Google Scholar 

  63. Hindmarch I, Kerr JS, Sherwood N. The effects of alcohol and other drugs on psychomotor performance and cognitive function. Alcohol Alcohol 1991; 26: 71–9

    PubMed  CAS  Google Scholar 

  64. Nilsson LG, Backman L, Karlsson T. Priming and cued recall in elderly, alcohol intoxicated and sleep deprived subjects: a case of functionally similar memory deficits. Psychol Med 1989; 19: 423–33

    PubMed  CAS  Google Scholar 

  65. Clausen TG, Wolff J, Carl P, et al. The effect of the benzodiazepine antagonist, flumazenil, on psychometric performance in acute ethanol intoxication in man. Eur J Clin Pharmacol 1990; 38: 233–6

    PubMed  CAS  Google Scholar 

  66. Collins WE, Mertens HW. Age, alcohol, and simulated altitude: effects on performance and breathalyzer scores. Aviat Space Environ Med 1988; 59: 1026–33

    PubMed  CAS  Google Scholar 

  67. Sanders AF. Towards a model of stress and human performance. Acta Psychol (Amst) 1983; 53: 61–97

    CAS  Google Scholar 

  68. McCann UD, Penetar DM, Shaham Y, et al. Sleep deprivation and impaired cognition. Possible role of brain catecholamines. Biol Psychiatry 1992; 31: 1082–97

    PubMed  CAS  Google Scholar 

  69. Hunt E. What do we need to know about aging? In: Cerella J, Rybash J, Hoyer W, et al., editors. Adult information processing: limits on loss. San Diego: Academic Press Inc, 1993: 587–98

    Google Scholar 

  70. Hobus P. Expertise van huisartsen. Praktijkervaring, kennis en diagnostische hypothesevorming. Maastricht: Rijksuniversiteit Limburg, 1994

    Google Scholar 

  71. Hijman R. Desglycinamide-(Arg(8))-vasopressin in patients with memory disturbances. Utrecht: University Press, 1992

    Google Scholar 

  72. Brand N, Jolles J. Learning and retrieval rate of words presented auditorily and visually. J Gen Psychol 1985; 112: 201–10

    PubMed  CAS  Google Scholar 

  73. Rey A. L’examen psychologique dans les cas d’encéphalopathie traumatique. Paris: Presses Universitaires de France, 1964

    Google Scholar 

  74. Buschke H. Selective reminding for analysis of memory and learning. J Verbal Learning Verbal Behav 1973; 12: 543–50

    Google Scholar 

  75. Sternberg S. Memory scanning: mental processes revealed by reaction time experiments. Am Sci 1969; 57: 421–57

    PubMed  CAS  Google Scholar 

  76. Verhaeghen P, Marcoen A, Goossens L. Facts and fiction about memory aging: a quantitative integration of research findings. J Gerontol 1993; 48: P157–71

    PubMed  CAS  Google Scholar 

  77. Brand N, Jolies J. Information processing in depression and anxiety. Psychol Med 1987; 17: 145–53

    PubMed  CAS  Google Scholar 

  78. Saletu B, Anderer P, Kinsperger K, et al. Topographic brain mapping of EEG in neuropsychopharmacology — part II. Clinical applications (pharmaco EEG imaging). Methods Find Exp Clin Pharmacol 1987; 9: 385–408

    PubMed  CAS  Google Scholar 

  79. Michel CM, Lehmann D. Single doses of piracetam affect 42-channel event-related potential microstate maps in a cognitive paradigm. Neuropsychobiology 1993; 28: 212–21

    PubMed  CAS  Google Scholar 

  80. Wesnes KA, Anand R, Simpson PM, et al. The use of a scopolamine model to study the potential nootropic effects of aniracetam and piracetam in healthy volunteers. J Psychopharmacol 1990; 4: 219–32

    PubMed  CAS  Google Scholar 

  81. Zyhlarz G, Saletu B, Hitzenberger G, et al. Double-blind, placebo-controlled, pharmacokinetic and dynamic studies with two new formulations of piracetam (infusion and syrup) under hypoxia in man. Neuropsychopharmacology 1994; 10: 117S

    Google Scholar 

  82. Preda L, Alberoni M, Bressi S, et al. Effects of acute doses of oxiracetam in the scopolamine model of human amnesia. Psychopharmacology 1993; 110: 421–6

    PubMed  CAS  Google Scholar 

  83. Saletu B, Schulz H, Herrmann WM, et al. BMS-181168 for protection of the human brain against hypoxia: double-blind, placebo-controlled EEG mapping studies. Pharmacopsychiatry 1994; 27: 189–97

    PubMed  CAS  Google Scholar 

  84. Saletu B, Grunberger J, Anderer R. On brain protection of codergocrine mesylate (Hydergine) against hypoxic hypoxidosis of different severity: double-blind placebo-controlled quantitative EEG and psychometric studies. Int J Clin Pharmacol Ther Toxicol 1990; 28: 510–24

    PubMed  CAS  Google Scholar 

  85. Saletu B, Anderer P, Grunberger J. Topographic brain mapping of EEG after acute application of ergotalkaloids in the elderly. Arch Gerontol Geriatr 1990; 11: 1–22

    PubMed  CAS  Google Scholar 

  86. Patat A, Klein MJ, Surjus A, et al. RU 41,656 does not reverse the scopolamine-induced cognitive deficit in healthy volunteers. Eur J Clin Pharmacol 1991; 41: 225–31

    PubMed  CAS  Google Scholar 

  87. Patat A, Klein MJ, Surjus A, et al. Study of the potential reversal of triazolam memory and cognitive deficits by RU 41 656 in healthy subjects. Psychopharmacol Bed 1991; 104: 75–80

    CAS  Google Scholar 

  88. Bruins J, Kumar A, Schneider Helmert D. Influence of desglycinamide-(arg8) vasopressin on memory in healthy subjects. Neuropsychobiology 1990; 23: 82–8

    PubMed  CAS  Google Scholar 

  89. Bruins J, Hijman R, Van Ree JM. Effect of a single dose of des-glycinamide-[Arg8]vasopressin or oxytocin on cognitive processes in young healthy subjects. Peptides 1992; 13: 461–8

    PubMed  CAS  Google Scholar 

  90. Siegfried KR. First clinical impressions with an ACTH analog (HOE 427) in the treatment of Alzheimer’s disease. Ann NY Acad Sci 1991; 640: 280–3

    PubMed  CAS  Google Scholar 

  91. Wesnes KA, Simpson PM, White L, et al. HOE-427, a cholinergically active neuropeptide, improves cognitive efficiency in the elderly. Biol Psychiatry 1991; 29: 691

    Google Scholar 

  92. Molchan SE, Mellow AM, Lawlor BA, et al. TRH attenuates scopolamine-induced memory impairment in humans. Psychopharmacology 1990; 100: 84–9

    PubMed  CAS  Google Scholar 

  93. Glue P, Bailey J, Wilson S, et al. Thyrotropin-releasing hormone selectively reverses lorazepam-induced sedation but not slowing of saccadic eye movements. Life Sci 1992; 50: Pl25–30

    PubMed  CAS  Google Scholar 

  94. Wesnes KA, Simpson PM, White L, et al. Cholinesterase inhibition in the scopolamine model of dementia. Ann NY Acad Sci 1991; 640: 268–71

    PubMed  CAS  Google Scholar 

  95. Wallnöfer A, Prescott J, Malek N, et al. Physostigmine improves cognitive performance and alters EEG in healthy volunteers — an approach to study central cholinergic effects. Neuropsychopharmacology 1994; 10: 39S

    Google Scholar 

  96. Wesnes KA, Simpson P, Christmas L, et al. Effects of HP029 in a scopolamine model of ageing and dementia. 17th Congress of C.I.N.P.: 1990 Sep 9–13; Kyoto, 235

  97. Lines CR, Ambrose JH, Heald A, et al. A double-blind, placebo controlled study of the effects of eptastigmine on scopolamine-induced cognitive deficits in healthy male subjects. Hum Psychopharmacol 1993; 8: 271–8

    Google Scholar 

  98. Brass EP, Polinsky R, Sramek JJ, et al. Effects of the cholinomimetic SDZ ENS-163 on scopolamine-induced cognitive impairment in humans. J Clin Psychopharmacol 1995; 15: 58–62

    PubMed  CAS  Google Scholar 

  99. Rusted J, Eaton-Williams P. Distinguishing between attentional and amnestic effects in information processing: the separate and combined effects of scopolamine and nicotine on verbal free recall. Psychopharmacology 1991; 104: 363–6

    PubMed  CAS  Google Scholar 

  100. Hindmarch I, Kerr JS, Sherwood N. Effects of nicotine gum on psychomotor performance in smokers and non-smokers. Psychopharmacology 1990; 100: 535–41

    PubMed  CAS  Google Scholar 

  101. Kerr JS, Sherwood N, Hindmarch I. Separate and combined effects of the social drugs on psychomotor performance. Psychopharmacology Berl 1991; 104: 113–9

    PubMed  CAS  Google Scholar 

  102. Newhouse PA, Penetar DM, Fertig JB, et al. Stimulant drug effects on performance and behavior after prolonged sleep deprivation: a comparison of amphetamine, nicotine, and deprenyl. Mil Psychol 1992; 4: 207–33

    Google Scholar 

  103. Rusted J, Graupner L, O’Connell N, et al. Does nicotine improve cognitive function? Psychopharmacology 1994; 115: 547–9

    PubMed  CAS  Google Scholar 

  104. Le Houezec J, Halliday R, Benowitz NL, et al. A low dose of subcutaneous nicotine improves information processing in non-smokers. Psychopharmacology 1994; 114: 628–34

    PubMed  Google Scholar 

  105. Riedel WJ, Hogervorst E, Leboux RLAM, et al. Caffeine attenuates scopolamine-induced memory impairment in humans. Psychopharmacology 1995; 122: 158–68

    PubMed  CAS  Google Scholar 

  106. Soetens E, D’Hooge R, Hueting JE. Amphetamine enhances human-memory consolidation. Neurosci Lett 1993; 161: 9–12

    PubMed  CAS  Google Scholar 

  107. Vincent A, Risinger R, Schmidt M, et al. Cognitive effects of idazoxan in normal volunteers. Neuropsychopharmacology 1994; 10: 115S

    Google Scholar 

  108. Preston GC, Millson DS, Ceuppens PR, et al. Effects of the 5-HT3 receptor antagonist GR68755 on a scopolamine induced cognitive deficit in healthy subjects. Br J Clin Pharmacol 1992; 33: 546

    Google Scholar 

  109. Wesnes K, Anand R, Lorscheid T. Potential of moclobemide to improve cerebral insufficiency identified using a scopolamine model of aging and dementia. Acta Psychiatr Scand Suppl 1990; 360: 71–2

    PubMed  CAS  Google Scholar 

  110. Curran HV, Birch B. Differentiating the sedative, psychomotor and amnesic effects of benzodiazepines: a study with midazolam and the benzodiazepine antagonist, flumazenil. Psychopharmacol Berl 1991; 103: 519–23

    CAS  Google Scholar 

  111. Ghoneim MM, Block RI, Ping ST, et al. The interactions of midazolam and flumazenil on human memory and cognition. Anesthesiology 1993; 79: 1183–92

    PubMed  CAS  Google Scholar 

  112. Hommer D, Weingartner HJ, Breier A. Dissociation of benzodiazepine-induced amnesia from sedation by flumazenil pretreatment. Psychopharmacology 1993; 112: 455–60

    PubMed  CAS  Google Scholar 

  113. Duka T, Edelmann V, Schutt B, et al. Scopolamine-induced amnesia in humans: lack of effects of the benzodiazepine receptor antagonist β-carboline ZK 93426. J Psychopharmacol 1992; 6: 382–8

    PubMed  CAS  Google Scholar 

  114. Jones RW, Wesnes KA, Kirby J. Effects of NMDA modulation in scopolamine dementia. Ann NY Acad Sci 1991; 640: 241–4

    PubMed  CAS  Google Scholar 

  115. Wesnes K, Jones RW, Kirby J, et al. D-Cycloserine antagonizes scopolamine induced memory impairments and improves memory in the elderly. Biol Psychiatry 1991; 29: 700S

    Google Scholar 

  116. Wesnes K, Jones RW, Kirby J. The effects of D-cycloserine, a glycine agonist, in a human model of the cognitive deficits associated with ageing and dementia. Br J Clin Pharmacol 1991; 31: 577–8

    Google Scholar 

  117. Camp-Bruno JA, Herting RL, Winsberg BG. Milacemide effects on memory and vigilance. Biol Psychiatry 1991; 29: 286

    Google Scholar 

  118. Yu G, Maskray V, Jackson SH, et al. A comparison of the central nervous system effects of caffeine and theophylline in elderly subjects. Br J Clin Pharmacol 1991; 32: 341–5

    PubMed  CAS  Google Scholar 

  119. Mattila ME, Mattila MJ, Nuotto E. Caffeine moderately antagonizes the effects of triazolam and zopiclone on the psychomotor performance of healthy subjects. Pharmacol Toxicol 1992; 70: 286–9

    PubMed  CAS  Google Scholar 

  120. Hasenfratz M, Bunge A, Dal Pra G, et al. Antagonistic effects of caffeine and alcohol on mental performance parameters. Pharmacol Biochem Behav 1993; 46: 463–5

    PubMed  CAS  Google Scholar 

  121. Rush CR, Higgins ST, Hughes JR, et al. Acute behavioral effects of triazolam and caffeine, alone and in combination, in humans. Exp Clin Psychopharmacol 1994; 2: 211–22

    CAS  Google Scholar 

  122. Lorist MM, Snel J, Kok A, et al. Influence of caffeine on selective attention in well rested and fatigued subjects. Psychophysiology 1994; 31: 525–34

    PubMed  CAS  Google Scholar 

  123. Lorist MM, Snel J, Kok A. Influence of caffeine on information processing stages in well rested and fatigued subjects. Psychopharmacology 1994; 113: 411–21

    PubMed  CAS  Google Scholar 

  124. Tiplady B, Fagan D, Lamont M, et al. A comparison of the CNS effects of enprofylline and theophylline in healthy subjects assessed by performance testing and subjective measures. Br J Clin Pharmacol 1990; 30: 55–61

    PubMed  CAS  Google Scholar 

  125. Meador KJ, Nichols ME, Franke P, et al. Evidence for a central cholinergic effect of high-dose thiamine. Ann Neurol 1993; 34: 724–6

    PubMed  CAS  Google Scholar 

  126. Benton D, Owens DS. Blood glucose and human memory. Psychopharmacology 1993; 113: 83–8

    PubMed  CAS  Google Scholar 

  127. Rosadini G, Sannita WG, Nobili F, et al. Phosphatidylserine: quantitative EEG effects in healthy volunteers. Neuropsychobiology 1990; 24: 42–8

    PubMed  CAS  Google Scholar 

  128. Ladd SL, Sommer SA, LaBerge S, et al. Effect of phosphatidylcholine on explicit memory. Clin Neuropharmacol 1993; 16: 540–9

    PubMed  CAS  Google Scholar 

  129. Meyer FP. Influence of nifedipine on human performance following a single dose — differential psychopharmacological aspects. Hum Psychopharmacol 1994; 9: 93–100

    Google Scholar 

  130. Lines CR, Preston GC, Dawson CE, et al. The effects of pretreatment with enalapril maleate on scopolamine-induced cognitive deficits in healthy volunteers. J Psychopharmacol 1991; 5: 228–33

    PubMed  CAS  Google Scholar 

  131. Israel L, Melac M, Milinkevitch D, et al. Drug therapy and memory training programs: a double-blind randomized trial of general practice patients with age-associated memory impairment. Int Psychogeriatr 1994; 6: 155–70

    PubMed  CAS  Google Scholar 

  132. Mauri M, Sinforiani E, Reverberi F, et al. Pramiracetam effects on scopolamine-induced amnesia in healthy volunteers. Arch Gerontol Geriatr 1994; 18: 133–9

    PubMed  CAS  Google Scholar 

  133. Dodt C, Pietrowsky R, Sewing A, et al. Effects of vasopressin on event-related potential indicators of cognitive stimulus processing in young and old humans. J Gerontol 1994; 49: M183–8

    PubMed  CAS  Google Scholar 

  134. Wang Z-X, Ren Q-Y, Shen Y-C. A Double-blind, control study of huperzine A and piracetam in patients with age-associated memory impairment and Alzheimer’s disease. Neuropsychopharmacology 1994; 10: 763S

    Google Scholar 

  135. Saletu B, Darragh A, Breuel HP, et al. EEG mapping central effects of multiple doses of linopirine — a cognitive enhancer in healthy elderly male subjects. Hum Psychopharmacol 1991; 6: 267–75

    CAS  Google Scholar 

  136. McEntee WJ, Crook TH, Jenkyn LR, et al. Treatment of age-associated memory impairment with guanfacine. Psychopharmacol Bull 1991; 27: 41–6

    PubMed  CAS  Google Scholar 

  137. Poitrenaud J, Piette F, Malbezin M, et al. Almitrine-raubasine and cognitive impairment in the elderly: results of a 6-month controlled multicenter study. Clin Neuropharmacol 1990; 13: 100–8

    Google Scholar 

  138. Wesnes K, Neuman E, De Wilde HJG, et al. Pharmacodynamic effects of repeated oral administration of 4 different doses of S12024-2 (cognitive enhancer) in 36 healthy elderly volunteers. Neurobiol Aging 1994; 15: 100

    Google Scholar 

  139. Crook TH, Lakin M. Effects of ondansetron in age-associated memory impairment. Biol Psychiatry 1991; 2: 888–90

    Google Scholar 

  140. Searle & Co. Multicenter, randomized, double-blind study of 1 mg, 5 mg and 15 mg b.i.d. of cycloserine vs placebo in the treatment of age-associated memory impairment [technical report]. 1993, EC 6-93-02-007

  141. Schwartz BL, Hashtroudi S, Herting RL, et al. Glycine prodrug facilitates memory retrieval in humans. Neurology 1991; 41: 1341–3

    PubMed  CAS  Google Scholar 

  142. Benton D, Fordy J, Haller J. The impact of long-term vitamin supplementation on cognitive functioning. Psychopharmacology 1995; 117: 298–305

    PubMed  CAS  Google Scholar 

  143. Deijen JB, Van der Beek EJ, Orlebeke JF, et al. Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology 1992; 109: 489–96

    PubMed  CAS  Google Scholar 

  144. Hindmarch I, Coleston DM, Kerr JS. Psychopharmacological effects of pyritinol in normal volunteers. Neuropsychobiology 1990; 24: 159–64

    PubMed  Google Scholar 

  145. Kün;kel H. EEG profile of three different extractions of ginkgo biloba. Neuropyschobiology 1993; 27: 40–5

    Google Scholar 

  146. Münte TF, Heinze HJ, Matzke M, et al. Effects of oxazepam and an extract of kava roots (Piper methysticum) on event-related potentials in a word recognition task. Neuropsychobiology 1993; 27: 46–53

    PubMed  Google Scholar 

  147. Saletu B, Grunberger J, Linzmayer L, et al. EEG brain mapping and psychometry in age-associated memory impairment after acute and 2-week infusions with the hemoderivative actovegin: double-blind, placebo-controlled trials. Neuropsychobiology 1990; 24: 135–48

    PubMed  Google Scholar 

  148. Crook TH, Tinklenberg J, Yesavage J, et al. Effects of phosphatidylserine in age-associated memory impairment. Neurology 1991; 41: 644–9

    PubMed  CAS  Google Scholar 

  149. Sudilovsky A, Crook T, Repetti S, et al. Angiotensin converting enzyme inhibitors (ACEI) and cognitive functioning in animals and man. Biol Psychiatry 1991; 29: 287

    Google Scholar 

  150. Bruce-Jones PN, Crome P, Kalra L. Indomethacin and cognitive function in healthy elderly volunteers. Br J Clin Pharmacol 1994; 38: 45–51

    PubMed  CAS  Google Scholar 

  151. Vernon MW, Sorkin EM. Piracetam: an overview of its pharmacological properties and a review of its therapeutic use in senile cognitive disorders. Drugs Aging 1991; 1: 17–35

    PubMed  CAS  Google Scholar 

  152. Mondadori C. In search of the mechanism of action of the nootropics: new insights and potential clinical implications. Life Sci 1994; 55: 2171–8

    PubMed  CAS  Google Scholar 

  153. Stelmach GE, Zelaznik HN, Lowe D. The influence of aging and attentional demands on recovery from postural instability. Aging 1990; 2: 155–61

    PubMed  CAS  Google Scholar 

  154. Teasdale N, Bard C, LaRue J, et al. On the cognitive penetrability of posture control. Exp Aging Res 1993; 19: 1–13

    PubMed  CAS  Google Scholar 

  155. Wadworth AN, Chrisp P. Co-dergocrine mesylate: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in age-related cognitive decline. Drugs Aging 1992; 2: 153–73

    PubMed  CAS  Google Scholar 

  156. Jolles J. Vasopressin and human behavior. In: Gash DM, Boer GJ, editors. Vasopressin, principles and properties. New York: Plenum Press, 1987: 549–78

    Google Scholar 

  157. McEntee WJ, Crook TH. Cholinergic function in the aged brain: implications for treatment of memory impairments associated with aging. Behav Pharmacol 1992; 3: 327–36

    PubMed  CAS  Google Scholar 

  158. Bodick NC, DeLong AF, Bonate PL, et al. Xanomeline, a specific Ml agonist: early clinical studies. In: Giacobini E, Becker RE, editors. Alzheimer’s disease: therapeutic strategies. Basel: Birkhäuser Verlag AG, 1994: 234–8

    Google Scholar 

  159. Sahakian B, Jones GMM, Levy R, et al. The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatry 1989; 154: 797–800

    PubMed  CAS  Google Scholar 

  160. Jones GMM, Sahakian BJ, Levy R, et al. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 1992; 108: 485–94

    PubMed  CAS  Google Scholar 

  161. Wagstaff AJ, McTavish D. Tacrine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer’s disease. Drugs Aging 1994; 4: 510–40

    PubMed  CAS  Google Scholar 

  162. Giacobini E, Becker R. Development of drugs for Alzheimer therapy: a decade of progress. In: Giacobini E, Becker RE, editor. Alzheimer’s disease: therapeutic strategies. Basel: Birkhäuser Verlag AG, 1994: 1–7

    Google Scholar 

  163. Van Duijn M, Hofman A. Relation between nicotine intake and Alzheimer’s disease. BMJ 1991; 302: 1491–4

    PubMed  Google Scholar 

  164. Newhouse PA, Potter A, Corwin J, et al. Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacol Berl 1992; 108: 480–4

    CAS  Google Scholar 

  165. Newhouse PA, Potter A, Corwin J, et al. Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology 1994; 10: 93–107

    PubMed  CAS  Google Scholar 

  166. McGehee D, Heath M, Gelber S, et al. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269: 1692–6

    PubMed  CAS  Google Scholar 

  167. Coull JT. Pharmacological manipulations of the α2-noradrenergic system: effects on cognition. Drugs Aging 1994; 5: 116–26

    PubMed  CAS  Google Scholar 

  168. Robbins T, Everitt B. Arousal systems and attention. In: Gazzangia M, editor. The cognitive neurosciences. Cambridge (MA): MIT Press, 1995: 703–20

    Google Scholar 

  169. McEntee WJ, Crook TH. Serotonin, memory, and the aging brain. Psychopharmacol Berl 1991; 103: 143–9

    CAS  Google Scholar 

  170. Porsolt RD. Serotonin: neurotransmitter ‘a la mode’. Report on the Third International I.T.E.M.–LABO symposium on strategies in psychopharmacology. Serotonin: animal models and clinical targets. Pharmacopsychiatry 1993; 26: 20–4

    PubMed  CAS  Google Scholar 

  171. Muller T, Kuhn W, Przuntek H. Therapy with central active catechol-O-methyltransferase (COMT)-inhibitors: is addition of monoamine oxidase (MAO)-inhibitors necessary to slow progress of neurodegenerative disorders? J Neural Transm Gen Sect 1993; 92: 187–95

    PubMed  CAS  Google Scholar 

  172. Stoll S, Hafner U, Pohl O, et al. Age-related memory decline and longevity under treatment with selegiline. Life Sci 1994; 55: 2155–63

    PubMed  CAS  Google Scholar 

  173. Houx PJ, Vreeling FW, Jolles J. Stroop interference: aging effects assessed with the Stroop Color-Word Test. Exp Aging Res 1993; 19: 209–24

    PubMed  CAS  Google Scholar 

  174. Tariot PN, Cohen RM, Sunderland T, et al. L-Deprenyl in Alzheimer’s disease. Arch Gen Psychiatry 1987; 44: 427–33

    PubMed  CAS  Google Scholar 

  175. Schneider LS, Tariot PN, Goldstein B. Therapy with l-deprenyl (selegiline) and relation to abuse liability. Clin Pharmacol Ther 1994; 56: 750–6

    PubMed  CAS  Google Scholar 

  176. Ziegler G, Ludwig L, Fritz G. Effect of the specific benzodiazepine antagonist Ro 15-1788 on sleep. Pharmacopsychiatry 1986; 19: 200–1

    CAS  Google Scholar 

  177. O’Hanlon JF, Vermeeren A. Effects of Ro 15-1788 on the vigilance performance of sleep-deprived men. Hum Psychopharmacol 1988; 3: 267–74

    Google Scholar 

  178. Herting RL. Milacemide and other drugs active at glutamate NMDA receptors as potential treatment for dementia. Ann NY Acad Sci 1991; 640: 237–40

    PubMed  CAS  Google Scholar 

  179. Müller WE, Scheuer K, Stoll S. Glutamatergic treatment strategies for age-related memory disorders. Life Sci 1994; 55: 2147–53

    PubMed  Google Scholar 

  180. Markowitsch H. Intellectual functions and the brain. An historical perspective. Seattle: Hogrefe and Huber, 1992

    Google Scholar 

  181. Lieberman HR, Wurtman RJ, Emde GG, et al. The effects of low doses of caffeine on human performance and mood. Psychopharmacology 1987; 92: 308–12

    PubMed  CAS  Google Scholar 

  182. Biaggioni I, Subir P, Puckett A, et al. Caffeine and theophylline as adenosine receptor antagonists in humans. J Pharmacol Exp Ther 1991; 258: 588–93

    PubMed  CAS  Google Scholar 

  183. Swift CG, Tiplady B. The effects of age on the response to caffeine. Psychopharmacology 1988; 94: 29–31

    PubMed  CAS  Google Scholar 

  184. Stavric B. An update on research with coffee/caffeine (1989-1990). Food Chem Toxicol 1992; 30: 533–5

    PubMed  CAS  Google Scholar 

  185. Nehlig A, Daval J-L, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 1992; 17: 139–70

    PubMed  CAS  Google Scholar 

  186. Briley M. Biochemical strategies in the search for cognition enhancers. Pharmacopsychiatry 1990; 2: 75–80

    Google Scholar 

  187. Jarvis M. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology 1993; 110: 45–52

    PubMed  CAS  Google Scholar 

  188. Benton D. Vitamin-mineral supplements and intelligence. Proc Nutr Soc 1992; 51: 295–302

    PubMed  CAS  Google Scholar 

  189. Bohnen N, Jolles J, Degenaar CP. Lower blood levels of vitamin B12 are related to decreased performance of healthy subjects in the Stroop Color Word Test. Neurosci Res Commun 1992; 11: 53–6

    CAS  Google Scholar 

  190. Loriaux SM, Deijen JB, Orlebeke JF, et al. The effects of nicotinic acid and xanthinol nicotate on human memory in different categories of age. Psychopharmacology 1985; 87: 390–5

    PubMed  CAS  Google Scholar 

  191. Kleijnen J, Knipschild P. Niacin and vitamin B6 in mental functioning: a review of controlled trials in humans. Biol Psychiatry 1991; 29: 931–41

    PubMed  CAS  Google Scholar 

  192. Micheau J, Durkin TP, Destrade C, et al. Chronic administration of sulbutiamine improves long term memory formation in mice: possible cholinergic mediation. Pharmacol Biochem Behav 1985; 23: 195–8

    PubMed  CAS  Google Scholar 

  193. Consolis S, Mas M. Intérêt d’un antiasthénique polyvalent, Arcalion 200 sur la vigilance et le stress des sportifs en haute compétition [in French]. Psychol Med 1988; 20: 2

    Google Scholar 

  194. Israel L, Dell’Acio E, Hugonot R. Arcalion 200 entraînement mental. Intérêts d’Arcalion 200 chez les personnes âgées asthéniques. Journale de Médecine Pratique 1989; Suppl. 1: 19–24

    Google Scholar 

  195. Kleijnen J, Knipschild P. Ginkgo biloba for cerebral insufficiency. Br J Clin Pharmacol 1992; 34: 352–8

    PubMed  CAS  Google Scholar 

  196. Kleijnen J, Knipschild P. Ginkgo biloba. Lancet 1992; 340: 1136–9

    PubMed  CAS  Google Scholar 

  197. Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993; 43: 1609–11

    PubMed  CAS  Google Scholar 

  198. Semlitsch HV, Anderer P, Saletu B, et al. Topographic mapping of cognitive event-related potentials in a double-blind, placebo-controlled study with the hemoderivative Actovegin in age-associated memory impairment. Neuropsychobiology 1990; 24: 49–56

    PubMed  Google Scholar 

  199. O’Brien AJ, Bulpitt CJ. The effects of ACE inhibitors on cognitive function. Drugs Aging 1995; 6: 173–80

    PubMed  Google Scholar 

  200. Wenk GL. An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology 1989; 99: 431–8

    PubMed  CAS  Google Scholar 

  201. Benton D, Sargent J. Breakfast, blood glucose and memory. Biol Psychol 1992; 33: 207–10

    PubMed  CAS  Google Scholar 

  202. Guez D, Malbezin M, Neuman E, et al. S12024, a new drug in development for the treatment of Alzheimer’s disease. Update on dementia and functional disorders in old age; 1994 Jul 13–14: London

    Google Scholar 

  203. Houx PJ, Vreeling FW, Jolies J. Rigorous health screening reduces age effect on memory scanning task. Brain Cogn 1991; 15: 246–60

    PubMed  CAS  Google Scholar 

  204. Bohnen NI, Twijnstra A, Jolies J. A controlled trial with vasopressin analogue (DGAVP) on cognitive recovery immediately after head trauma. Neurology 1993; 43: 103–6

    PubMed  CAS  Google Scholar 

  205. Saletu B, Saletu M, Grünberger J, et al. Treatment of the alcoholic organic brain syndrome: double-blind, placebo-controlled clinical, psychometric and electroencephalographic mapping studies with modafinil. Neuropsychobiology 1993; 27: 26–39

    PubMed  CAS  Google Scholar 

  206. Aldenkamp AP, Wieringen Av, Alpherts WCJ, et al. Doubleblind placebo-controlled, neuropsychological and neurophysiological investigations with oxiracetam (CGP 21690E) in memory-impaired patients with epilepsy. Neuropsychobiology 1990; 24: 90–101

    PubMed  Google Scholar 

  207. Somnier FE, Ostergaard MS, Boysen G, et al. Aniracetam tested in chronic psychosyndrome after long-term exposure to organic solvents. A randomized, double-blind, placebo-controlled cross-over study with neuropsychological tests. Psychopharmacology 1990; 101: 43–6

    PubMed  CAS  Google Scholar 

  208. Phillips SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendo crinology 1992; 17: 485–95

    CAS  Google Scholar 

  209. Gaillard A. The evaluation of drug effects in laboratory tasks. In: Hindmarch I, Aufdembrinke B, Ott H, editors. Psychopharmacology and reaction time. Chichester: John Wiley &Sons, 1988: 15–24

    Google Scholar 

  210. Riedel WJ, Hamers HMW, Robbe HWJ, et al. Automated behavioral testing in psychotropic drug research. In: Mulder LJM, Maarse FJ, Sjouw WPB, et al., editors. Computers in psychology: applications in education, research and psychodiagnostics. Amsterdam: Swets & Zeitlinger, 1991: 166–70

    Google Scholar 

  211. Larrabee GJ, Crook T. A computerized everyday memory battery for assessing treatment effects. Psychopharmacol Bull 1988; 24: 695–7

    PubMed  CAS  Google Scholar 

  212. Simpson PM, Surmon DJ, Wesnes KA, et al. The cognitive drug research computerized assessment system for demented patients: a validation study. Int J Geriatr Psychiatry 1991; 6: 95–102

    Google Scholar 

  213. Jolies J. Aging of brain & behavior: biomedical, clinical and behavioral research in the domain of aging at the University of Limburg. In: Van Bezooijen CFA, Ravid R, Verhofstad AAJ, editors. From gene to man. The Hague: J.H. Pasmans Publishers, 1990: 146–50

    Google Scholar 

  214. Rusted J. Cholinergic blockade and human information processing: are we asking the right questions? J Psychopharmacol 1994; 8: 54–9

    PubMed  CAS  Google Scholar 

  215. Salin PR, Granados FD, Galicia PL, et al. Development of tolerance after repeated administration of a selective muscarinic M1 antagonist biperiden in healthy human volunteers. Biol Psychiatry 1993; 33: 188–93

    Google Scholar 

  216. File SE, Goodall EM, Mabbutt PS, et al. State-dependent retrieval and midazolam. Hum Psychopharm 1993; 8: 243–51

    Google Scholar 

  217. Birch B, Curran HV. The differential effects of flumazenil on the psychomotor and amnesic actions for midazolam. J Psychopharmacol 1990; 4: 29–34

    PubMed  CAS  Google Scholar 

  218. Rother M, Kessler J, Funke M, et al. Memory impairment after hyperventilation-a physiological model of cognitive dysfunctions. Neurobiol Aging 1994; 15: 92

    Google Scholar 

  219. Stoppe G, Sandholzer H, Staedt J, et al. Reasons for prescribing cognition enhancers in primary care: results of a representative survey in Lower Saxony, Germany. Int J Clin Pharmacol Ther 1995; 33: 486–90

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. Riedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, W.J., Jolles, J. Cognition Enhancers in Age-Related Cognitive Decline. Drugs & Aging 8, 245–274 (1996). https://doi.org/10.2165/00002512-199608040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199608040-00003

Keywords

Navigation