Drug Safety

, Volume 31, Issue 3, pp 199–215 | Cite as

Drug-Induced Taste Disorders

  • Richard L. Doty
  • Muhammad Shah
  • Steven M. Bromley
Review Article


Numerous drugs have the potential to adversely influence a patient’s sense of taste, either by decreasing function or producing perceptual distortions or phantom tastes. In some cases, such adverse effects are long lasting and cannot be quickly reversed by drug cessation. In a number of cases, taste-related adverse effects significantly alter the patient’s quality of life, dietary choices, emotional state and compliance with medication regimens. In this review, we describe common drug-related taste disturbances and review the major classes of medications associated with them, including antihypertensives, antimicrobials and anti-depressants. We point out that there is a dearth of scientific information related to this problem, limiting our understanding of the true nature, incidence and prevalence of drug-related chemosensory disturbances. The limited data available suggest that large differences exist among individuals in terms of their susceptibility to taste-related adverse effects, and that sex, age, body mass and genetic variations in taste sensitivity are likely involved. Aside from altering drug usage, management strategies for patients with taste-related adverse effects are sorely needed. Unfortunately, stopping a medication is not always an easy option, particularly when one is dealing with life-threatening conditions such as seizures, cancer, infection, diabetes mellitus and uncontrolled hypertension. Hopefully, the information contained in this review will sensitize physicians, researchers and drug manufacturers to this problem and will result in much more research on this pressing topic.


Fluticasone Propionate Terbinafine Bitter Taste Calcium Channel Antagonist Liposomal Doxorubicin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported, in part, by Grants RO1 DC 004278 and RO1 AG 27496 from the National Institutes of Health, Bethesda, MD, USA. Dr Doty is a major shareholder in Sensonics, Inc., a manufacturer and distributor of tests of smell and taste function, and has served as a consultant to GlaxoSmithKline and Sepracor. Dr Bromley has participated on advisory panels and speaker bureaus for GlaxoSmithKline, Eli Lilly and Company, Pfizer, Cephalon and Forest Pharmaceuticals.


  1. 1.
    Guggenheimer J. Oral manifestations of drug therapy. Dent Clin North Am 2002; 46(4): 857–68PubMedCrossRefGoogle Scholar
  2. 2.
    Marks HM. Revisiting the origins of compulsory drug prescriptions. Am J Public Health 1995; 85(1): 109–15PubMedCrossRefGoogle Scholar
  3. 3.
    Ciancio SG. Medications’ impact on oral health. J Am Dent Assoc 2004; 135(10): 1440–8PubMedGoogle Scholar
  4. 4.
    Physicians’ Desk Reference. Montvale (NJ): Medical Economics Company, Inc., 2005Google Scholar
  5. 5.
    Lewis IK, Hanlon JT, Hobbins MJ, et al. Use of medications with potential oral adverse drug reactions in community-dwelling elderly. Spec Care Dentist 1993; 13(4): 171–6PubMedCrossRefGoogle Scholar
  6. 6.
    Shinkai RS, Hatch JP, Schmidt CB, et al. Exposure to the oral side effects of medication in a community-based sample. Spec Care Dentist 2006; 26(3): 116–20PubMedCrossRefGoogle Scholar
  7. 7.
    Ahne G, Erras A, Hummel T, et al. Assessment of gustatory function by means of tasting tablets. Laryngoscope 2000 Aug; 110(8): 1396–401PubMedCrossRefGoogle Scholar
  8. 8.
    Doty RL. Office procedures for quantitative assessment of olfactory function. Amer J Rhinol 2007; 21(4): 460–73CrossRefGoogle Scholar
  9. 9.
    Deems DA, Doty RL, Settle RG, et al. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg 1991; 117(5): 519–28PubMedCrossRefGoogle Scholar
  10. 10.
    Burdach KJ, Doty RL. The effects of mouth movements, swallowing, and spitting on retronasal odor perception. Physiol Behav 1987; 41(4): 353–6PubMedCrossRefGoogle Scholar
  11. 11.
    Byrne BE. Oral manifestations of systemic agents. In: Ciancio SG, editor. ADA®/PDR® guide to dental therapeutics. 4th ed. Montvale (NJ): Thomson PDR, 2006: 835–9Google Scholar
  12. 12.
    Keiser HR, Henkin RI, Bartter FC, et al. Loss of taste during therapy with penicillamine. JAMA 1968; 203(6): 381–3PubMedCrossRefGoogle Scholar
  13. 13.
    Fogan L. Griseofulvin and dysgeusia: implications? Ann Intern Med 2007; 74: 795–6Google Scholar
  14. 14.
    Bromley SM, Doty RL. Clinical disorders affecting taste: evaluation and management. In: Doty RL, editor. Handbook of olfaction and gustation. New York: Marcel Dekker, 2003: 935–57Google Scholar
  15. 15.
    Ishizaka T, Miyanaga Y, Mukai J, et al. Bitterness evaluation of medicines for pediatric use by a taste sensor. Chem Pharm Bull 2004; 52(8): 943–8PubMedCrossRefGoogle Scholar
  16. 16.
    Schiffman SS, Zervakis J, Westall HL, et al. Effect of antimicrobial and anti-inflammatory medications on the sense of taste. Physiol Behav 2000; 69(4–5): 413–24PubMedCrossRefGoogle Scholar
  17. 17.
    Juhlin L. Loss of taste and terbinafine [letter]. Lancet 1992; 339(8807): 1483PubMedCrossRefGoogle Scholar
  18. 18.
    Beutler M, Hartmann K, Kuhn M, et al. Taste disorders and terbinafine [letter]. BMJ 1993: 307: 26PubMedCrossRefGoogle Scholar
  19. 19.
    Bong JL, Lucke TW, Evans CD. Persistent impairment of taste resulting from terbinafine. Br J Dermatol 1998; 139(4): 747–8PubMedCrossRefGoogle Scholar
  20. 20.
    Doty RL, Haxel BR. Objective assessment of terbinafine-induced taste loss. Laryngoscope 2005; 115(11): 2035–7PubMedCrossRefGoogle Scholar
  21. 21.
    Stricker BH, Van RM, Sturkenboom MC, et al. Taste loss to terbinafine: a case-control study of potential risk factors. Br J Clin Pharmacol 1996; 42(3): 313–8PubMedCrossRefGoogle Scholar
  22. 22.
    Granger EM, Glendinning JI, Smith JC, et al. Behavioral and electrophysiological responses to NaCl in young and old fisch-er-344 rats. Chem Senses 1993; 18(4): 419–26CrossRefGoogle Scholar
  23. 23.
    Balfour JA, Faulds D. Terbinafine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial mycoses. Drugs 1992; 43(2): 259–84PubMedCrossRefGoogle Scholar
  24. 24.
    Doty RL, Philip S, Reddy K, et al. Influences of antihypertensive and antihyperlipidemic drugs on the senses of taste and smell: a review. J Hypertens 2003; 21(10): 1805–13PubMedCrossRefGoogle Scholar
  25. 25.
    Hellekant G, Danilova V, Ninomiya Y. Primate sense of taste: behavioral and single chorda tympani and glossopharyngeal nerve fiber recordings in the rhesus monkey, Macaca mulatta. J Neurophysiol 1997; 77(2): 978–93PubMedGoogle Scholar
  26. 26.
    Eiznhamer DA, Creagh T, Ruckle JL, et al. Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers. HIV Clin Trials 2002; 3(6): 435–50PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson MO, Stallworth T, Neilands TB. The drugs or the disease? Causal attributions of symptoms held by HIV-positive adults on HAART. AIDS Behav 2003; 7(2): 109–17PubMedCrossRefGoogle Scholar
  28. 28.
    Eksborg S, Pal N, Kalin M, et al. Pharmacokinetics of acyclovir in immunocompromized children with leukopenia and mucositis after chemotherapy: can intravenous acyclovir be substituted by oral valacyclovir? Med Pediatr Oncol 2002; 38(4): 240–6PubMedCrossRefGoogle Scholar
  29. 29.
    Hayden FG, Andries K, Janssen PA. Safety and efficacy of intranasal pirodavir (R77975) in experimental rhinovirus infection. Antimicrob Agents Chemother 1992; 36(4): 727–32PubMedCrossRefGoogle Scholar
  30. 30.
    Hsyu PH, Pithavala YK, Gersten M, et al. Pharmacokinetics and safety of an antirhinoviral agent, ruprintrivir, in healthy volunteers. Antimicrob Agents Chemother 2002; 2002 Feb; 46(2): 392–7PubMedCrossRefGoogle Scholar
  31. 31.
    Wang LH, Peck RW, Yin Y, et al. Phase I safety and pharmacokinetic trials of 1263W94, a novel oral anti-human cytome-galovirus agent, in healthy and human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 2003; 47(4): 1334–42PubMedCrossRefGoogle Scholar
  32. 32.
    Macknin ML, Piedmonte M, Calendine C, et al. Zinc gluconate lozenges for treating the common cold in children: a randomized controlled trial. JAMA 1998; 279(24): 1962–7PubMedCrossRefGoogle Scholar
  33. 33.
    Marshall S. Zinc gluconate and the common cold. Review of randomized controlled trials. Can Fam Phy 1998; 44: 1037–42Google Scholar
  34. 34.
    Mossad SB, Macknin ML, Medendorp SV, et al. Zinc gluconate lozenges for treating the common cold: a randomized, double-blind, placebo-controlled study. Ann Intern Med 1996; 125(2): 81–8PubMedGoogle Scholar
  35. 35.
    Tanaka M. Secretory function of the salivary gland in patients with taste disorders or xerostomia: correlation with zinc deficiency. Acta Otolaryngol Suppl 2002; (546): 134–41Google Scholar
  36. 36.
    Bergman U, Ostergren A, Gustafson AL, et al. Differential effects of olfactory toxicants on olfactory regeneration. Arch Toxicol 2002; 76(2): 104–12PubMedCrossRefGoogle Scholar
  37. 37.
    Oakley B, Riddle DR. Receptor cell regeneration and connectivity in olfaction and taste. Exp Neurol 1992; 115(1): 50–4PubMedCrossRefGoogle Scholar
  38. 38.
    Zain RB, Hanks CT. Morphological changes in taste buds of the fungiform papillae after a single dose of x-ray irradiation in rats. Malays J Pathol 1989; 11: 57–64PubMedGoogle Scholar
  39. 39.
    Nakamura H, Nonomura N, Fujiwara M, et al. Olfactory disturbances caused by the anti-cancer drug tegafur. Eur Arch Otorhinolaryngol 1995; 252(1): 48–52PubMedCrossRefGoogle Scholar
  40. 40.
    Epstein JB, Phillips N, Parry J, et al. Quality of life, taste, olfactory and oral function following high-dose chemotherapy and allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2002; 30(11): 785–92PubMedCrossRefGoogle Scholar
  41. 41.
    Wickham RS, Rehwaldt M, Kefer C, et al. Taste changes experienced by patients receiving chemotherapy. Oncol Nurs Forum 1999; 26(4): 697–706PubMedGoogle Scholar
  42. 42.
    Bergström U, Giovanetti A, Piras E, et al. Methimazole-induced damage in the olfactory mucosa: effects on ultrastructure and glutathione levels. Tox Path 2003; 31: 379–87CrossRefGoogle Scholar
  43. 43.
    Kiewe P, Jovanovic S, Thiel E, et al. Reversible ageusia after chemotherapy with pegylated liposomal doxorubicin. Ann Pharmacother 2004; 38(7–8): 1212–4PubMedCrossRefGoogle Scholar
  44. 44.
    Hallman BL, Hurst JW. Loss of taste as a toxic effect of methimazole (tapazole) therapy: report of three cases [letter]. J Amer Med Assoc 1953; 152: 322CrossRefGoogle Scholar
  45. 45.
    McConnell RJ, Menendez CE, Smith FR, et al. Defects of taste and smell in patients with hypothyroidism. Am J Med 1975; 59(3): 354–64PubMedCrossRefGoogle Scholar
  46. 46.
    Genter MB, Owens DM, Carlone HB, et al. Characterization of olfactory deficits in the rat following administration of 2,6-dichlorobenzonitrile (dichlobenil), 3,3′-iminodipropionitrile, or methimazole. Fundam Appl Toxicol 1996; 29(1): 71–7PubMedCrossRefGoogle Scholar
  47. 47.
    Xu W, Slotnick B. Olfaction and peripheral olfactory connections in methimazole-treated rats. Behav Brain Res 1999; 102(1–2): 41–50PubMedCrossRefGoogle Scholar
  48. 48.
    Sitzia J, North C, Stanley J, et al. Side effects of CHOP in the treatment of non-Hodgkins’s lymphoma. Cancer Nurs 1997; 20(6): 430–9PubMedCrossRefGoogle Scholar
  49. 49.
    Brosvic GM, Doty RL, Rowe MM, et al. Influences of hypothyroidism on the taste detection performance of rats: a signal detection analysis. Behav Neurosci 1992; 106(6): 992–8PubMedCrossRefGoogle Scholar
  50. 50.
    Boyd I. Captopril-induced taste disturbance [letter]. Lancet 1993; 342: 304PubMedCrossRefGoogle Scholar
  51. 51.
    Zervakis J, Graham BG, Schiffman SS. Taste effects of lingual application of cardiovascular medications. Physiol Behav 2000 Jan; 68(3): 405–13PubMedCrossRefGoogle Scholar
  52. 52.
    Griffin JP. Drug-induced disorders of taste. Adverse Drug React Toxicol Rev 1992; 11(4): 229–39PubMedGoogle Scholar
  53. 53.
    DiBianco R. ACE inhibitors in the treatment of heart failure. Clin Cardiol 1990; 13 (6 Suppl. 7): VII32–8PubMedGoogle Scholar
  54. 54.
    Grosskopf I, Rabinovitz M, Garty M, et al. Persistent captopril-associated taste alteration [letter]. Clin Pharm 1984; 3(3): 235PubMedGoogle Scholar
  55. 55.
    McNeil JJ, Anderson A, Christophidis N, et al. Taste loss associated with oral captopril treatment. BMJ 1979; 2: 1555–6PubMedCrossRefGoogle Scholar
  56. 56.
    Unnikrishnan D, Murakonda P, Dharmarajan TS. If it is not cough, it must be dysgeusia: differing adverse effects of angio-tensin-converting enzyme inhibitors in the same individual. J Am Med Dir Assoc 2004; 5(2): 107–10PubMedCrossRefGoogle Scholar
  57. 57.
    Heeringa M, van PE. Reversible dysgeusia attributed to losartan [letter]. Ann Intern Med 1998; 129(1): 72PubMedGoogle Scholar
  58. 58.
    Schlienger RG, Saxer M, Haefeli WE. Reversible ageusia associated with losartan [letter]. Lancet 1996; 347(8999): 471–2PubMedCrossRefGoogle Scholar
  59. 59.
    Goldberg AI, Dunlay MC, Sweet CS. Safety and tolerability of losartan potassium, an angiotensin II receptor antagonist, compared with hydroclorothiazide, atenolol, felodipine ER, and angiotensin-converting enzyme inhibitors for the treatment of systemic hypertension. Am J Cardiol 1995; 75(12): 793–5PubMedCrossRefGoogle Scholar
  60. 60.
    Goa KL, Wagstaff AJ. Losartan potassium: a review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs 1996; 51(5): 820–45PubMedCrossRefGoogle Scholar
  61. 61.
    Levenson JL, Kennedy K. Dysosmia, dysgeusia, and nifedipine. Ann Intern Med 1985; 102(1): 135–6PubMedGoogle Scholar
  62. 62.
    Guggenheimer J. Oral manifestations of drug therapy. Dent Clin North Am 2002; 46: 857–68PubMedCrossRefGoogle Scholar
  63. 63.
    Appel LJ. The verdict from ALLHAT: thiazide diuretics are the preferred initial therapy for hypertension. JAMA 2002; 288(23): 3039–42PubMedCrossRefGoogle Scholar
  64. 64.
    Roitman MF, Bernstein IL. Amiloride-sensitive sodium signals and salt appetite: multiple gustatory pathways. Am J Physiol Regul Integr Comp Physiol 1999; 276(6): 1732–8Google Scholar
  65. 65.
    Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch 2007; 454(5): 759–76PubMedCrossRefGoogle Scholar
  66. 66.
    Anand KK, Zuniga JR. Effect of amiloride on suprathreshold NaCl, LiCl, and KCl salt taste in humans. Physiol Behav 1997; 62(4): 925–9PubMedCrossRefGoogle Scholar
  67. 67.
    Mattes RD, Christensen CM, Engelman K. Effects of therapeutic doses of amiloride and hydrochlorothiazide on taste, saliva, and salt intake in normotensive adults. Chem Senses 1988; 13: 33–44CrossRefGoogle Scholar
  68. 68.
    McMurdo ME, Hutchinson GL, Lindsay G. Taste disturbance with acetazolamide. Lancet 1990; 336(8724): 1190–1PubMedCrossRefGoogle Scholar
  69. 69.
    Leaf A, Schwartz WB, Relman AS. Oral administration of a potent carbonic anhydrase inhibitor (Diamox): I. Changes in electrolyte and acid-base balance. N Engl J Med 1954; 250(18): 759–64PubMedCrossRefGoogle Scholar
  70. 70.
    Kennedy WA, Laurier C, Gautrin D, et al. Occurrence and risk factors of oral candidiasis treated with oral antifungals in seniors using inhaled steroids. J Clin Epid 2000; 53(97): 696–701CrossRefGoogle Scholar
  71. 71.
    Mitchell JC, Counselman FL. A taste comparison of three different liquid steroid preparations: prednisone, prednisolone, and dexamethasone. Acad Emerg Med 2003; 10(4): 400–3PubMedCrossRefGoogle Scholar
  72. 72.
    Bachert C, El Akkad T. Patient preferences and sensory comparisons of three intranasal corticosteroids for the treatment of allergic rhinitis. Ann Allergy Asthma Immunol 2002; 89(3): 292–7PubMedCrossRefGoogle Scholar
  73. 73.
    Regan TD, Lewis D, Norton SA. Taste comparison of corticosteroid suspensions. J Drugs Dermatol 2006; 5(9): 835–7PubMedGoogle Scholar
  74. 74.
    Kratskin IL, Kimura Y, Hastings L, et al. Chronic dexamethasone treatment potentiates insult to olfactory receptor cells produced by 3-methylindole. Brain Res 1999; 847(2): 240–6PubMedCrossRefGoogle Scholar
  75. 75.
    Schiffman SS, Graham BG, Suggs MS, et al. Effect of psychotropic drugs on taste responses in young and elderly persons. Ann NY Acad Sci 1998; 855: 732–7PubMedCrossRefGoogle Scholar
  76. 76.
    Schiffman SS, Zervakis J, Suggs MS, et al. Effect of medications on taste: example of amitriptyline HC1. Physiol Behav 1999; 66(2): 183–91PubMedCrossRefGoogle Scholar
  77. 77.
    Ackerman BH, Kasbekar N. Disturbances of taste and smell induced by drugs. Pharmacotherapy 1997; 17: 482–96PubMedGoogle Scholar
  78. 78.
    Hunter KD, Wilson WS. The effects of antidepressant drugs on salivary flow and content of sodium and potassium ions in human parotid saliva. Arch Oral Biol 1995; 40(11): 983–9PubMedCrossRefGoogle Scholar
  79. 79.
    Johnston JA, Fiedler-Kelly J, Glover ED, et al. Relationship between drug exposure and the efficacy and safety of bupropion sustained release for smoking cessation. Nicotine Tob Res 2001; 3(2): 131–40PubMedCrossRefGoogle Scholar
  80. 80.
    Padala KP, Hinners CK, Padala PR. Mirtazapine therapy for dysgeusia in an elderly patient. J Clin Psychiatry 2007; 8: 178–80Google Scholar
  81. 81.
    Scharf MB, Roth PB, Dominguez RA, et al. Estazolam and flurazepam: a multicenter, placebo-controlled comparative study in patients with insomnia. J Clin Pharmacol 1990; 30(5): 461–7PubMedGoogle Scholar
  82. 82.
    Berridge KC, Peciña S. Benzodiazepines, appetite, and taste palatability. Neurosci Biobehav Rev 1995; 19(1): 121–31PubMedCrossRefGoogle Scholar
  83. 83.
    Caldwell EE, Wallace P, Taylor SP. Use of an analog task to study effects of diazepam on taste perception, consummatory behaviors, and risk taking in a social context. J Gen Psychol 2004; 13(2): 101–17CrossRefGoogle Scholar
  84. 84.
    Abdullahi M, Radfar M. A review of drug induced oral reactions. J Cont Dent Prac 2005; 4(1): 1–22Google Scholar
  85. 85.
    Tyssen A, Remmerie B, Eng C, et al. Rapidly disintegrating risperidone in subjects with schizophrenia or schizoaffective disorder: a summary of ten phase I clinical trials assessing taste, tablet disintegration time, bioequivalence, and tolerability. Clin Ther 2007; 29(2): 290–304CrossRefGoogle Scholar
  86. 86.
    Bressler B. An unusual side-effect of lithium. Psychosomatics 1980; 21(8): 688–9PubMedGoogle Scholar
  87. 87.
    Vestergaard P, Poulstrup I, Schou M. Prospective studies on a lithium cohort: 3. Tremor, weight gain, diarrhea, psychological complaints. Acta Psychiat Scand 1988; 78(4): 434–41PubMedCrossRefGoogle Scholar
  88. 88.
    Duffield JE. Side effects of lithium carbonate [letter]. BMJ 1973; 1(5851): 491PubMedCrossRefGoogle Scholar
  89. 89.
    Himmelhoch JM, Hanin I. Letter: Side effects of lithium carbonate. BMJ 1974; 4(5938): 233PubMedCrossRefGoogle Scholar
  90. 90.
    Grupta KD, Jefferson JW. Lithium and “accidentally” induced food aversion [letter]. J Clin Psychiatry 1980; 41(10): 364PubMedGoogle Scholar
  91. 91.
    Mizielinska SM. Ion channels in epilepsy. Biochem Soc Trans 2007; 35 (Pt 5): 1077–9PubMedCrossRefGoogle Scholar
  92. 92.
    Onat F, Ozkara C. Adverse effects of new antiepileptic drugs. Drugs Today 2004; 40(4): 325–42PubMedCrossRefGoogle Scholar
  93. 93.
    Zeller JA, Machetanz J, Kessler C. Ageusia as an adverse effect of phenytoin treatment. Lancet 1998; 352: 68CrossRefGoogle Scholar
  94. 94.
    Brandes JL, Saper JR, Diamond M, et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA 2004; 291(8): 965–73PubMedCrossRefGoogle Scholar
  95. 95.
    Silberstein S, Loder E, Forder G, et al. The impact of migraine on daily activities: effect of topiramate compared to placebo. Curr Med Res Opin 2006; 22: 1021–9PubMedCrossRefGoogle Scholar
  96. 96.
    Storey JR, Calder CS, Hart DE, et al. Topiramate in migraine prevention: a double-blind, placebo-controlled study. Headache 2001; 41(10): 968–75PubMedCrossRefGoogle Scholar
  97. 97.
    Nakazato Y, Imai K, Abe T, et al. Unpleasant sweet taste: a symptom of SIADH caused by lung cancer. J Neurol Neurosurg Psychiat 2006; 77(3): 405–6PubMedCrossRefGoogle Scholar
  98. 98.
    Panayiotou H, Small SC, Hunter JH, et al. Sweet taste (dysgeusia). The first symptom of hyponatremia in small cell carcinoma of the lung. Arch Intern Med 1995; 155(12): 1325–8PubMedCrossRefGoogle Scholar
  99. 99.
    Marshall RI, Bartold PM. A clinical review of drug-induced gingival overgrowths. Aust Dent J 1999; 44: 219–32PubMedCrossRefGoogle Scholar
  100. 100.
    Mata F. Effect of dextro-amphetamine on bitter taste threshold. J Neuropsychol 1963; 4: 315–20Google Scholar
  101. 101.
    Saini T, Edwards PC, Kimmes NS, et al. Etiology of xerostomia and dental caries among methamphetamine abusers. Oral Health Prev Dent 2005; 3(3): 189–95PubMedGoogle Scholar
  102. 102.
    Doty RL, Ferguson-Segall M. Odor detection performance of rats following d-amphetamine treatment: a signal detection analysis. Psychopharmacology 1987; 93(1): 87–93PubMedCrossRefGoogle Scholar
  103. 103.
    Doty RL, Li C, Bagla R, et al. SKF 38393 enhances odor detection performance. Psychopharmacology 1998; 136(1): 75–82PubMedCrossRefGoogle Scholar
  104. 104.
    Doty RL, Risser JM. Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Psychopharmacology 1989; 98(3): 310–5PubMedCrossRefGoogle Scholar
  105. 105.
    Krystal AD, Walsh JK, Laska E, et al. Sustained efficacy of eszopiclone over 6 months of nightly treatment: results of a randomized, double-blind, placebo-controlled study in adults with chronic insomnia. Sleep 2003; 26(7): 793–9PubMedGoogle Scholar
  106. 106.
    Enghusen PH, Loft S, Andersen JR, et al. Disulfiram therapy — adverse drug reactions and interactions. Acta Psychiatr Scand Suppl. 1992; 369: 59–65Google Scholar
  107. 107.
    Fantino M, Hosotte J, Apfelbaum M. An opioid antagonist, naltrexone, reduces preference for sucrose in humans. Am J Physiol 1986; 251(1): R91–6PubMedGoogle Scholar
  108. 108.
    Bertino M, Beauchamp GK, Engelman K. Naltrexone, an opioid blocker, alters taste perception and nutrient intake in humans. Am J Physiol 1991 Jul; 261 (1 Pt 2): R59–63PubMedGoogle Scholar
  109. 109.
    Komorowski JM, Komorowska A. Naloxone modulates gustatory perception, but not insulin and c-peptide release, in shamfed human-subjects. Int J Obes 1986; 10(2): 83–9PubMedGoogle Scholar
  110. 110.
    Gaskell BA. Nonneoplastic changes in the olfactory epithelium: experimental studies. Environ Health Perspect 1990; 85: 275–89PubMedCrossRefGoogle Scholar
  111. 111.
    Reed CJ. Drug metabolism in the nasal cavity: relevance to toxicology. Drug Metab Rev 1993; 25(1–2): 173–205PubMedCrossRefGoogle Scholar
  112. 112.
    Frye RE, Schwartz BS, Doty RL. Dose-related effects of cigarette smoking on olfactory function. JAMA 1990; 263(9): 1233–6PubMedCrossRefGoogle Scholar
  113. 113.
    Matulionis DH. Ultrastructure of olfactory epithelia in mice after smoke exposure. Ann Otolaryngol 1974; 83: 192–201Google Scholar
  114. 114.
    Patel SJ, Bollhoefer AD, Doty RL. Influences of ethanol ingestion on olfactory function in humans. Psychopharmacology 2004; 171(4): 429–34PubMedCrossRefGoogle Scholar
  115. 115.
    Mair RG, McEntee WJ, Doty RL. Olfactory perception in Korsakoff s psychosis: correlation with brain noradrenergic activity. Neurology 1983; 33 Suppl. 2: 64–5Google Scholar
  116. 116.
    Vent J, Robinson AM, Gentry-Nielsen MJ, et al. Pathology of the olfactory epithelium: smoking and ethanol exposure. Laryngoscope 2004; 114(8): 1383–8PubMedCrossRefGoogle Scholar
  117. 117.
    Murray C, Solish N. Metallic taste: an unusual reaction to botulinum toxin A. Dermatol Surg 2003; 29: 562–3PubMedCrossRefGoogle Scholar
  118. 118.
    Mandel ID. The role of saliva in maintaining oral homeostasis. J Am Dent Assoc 1989; 119(2): 298–304PubMedGoogle Scholar
  119. 119.
    Sarinopoulos I, Dixon GE, Short SJ, et al. Brain mechanisms of expectation associated with insula and amygdala response to aversive taste: implications for placebo. Brain Behav Immun 2006; 20(2): 120–32PubMedCrossRefGoogle Scholar
  120. 120.
    Glendinning JI. Is the bitter rejection response always adaptive? Physiol Behav 1994; 56(6): 1217–27PubMedCrossRefGoogle Scholar
  121. 121.
    Drewnowski A. The science and complexity of bitter taste. Nutr Rev 2001; 59(6): 163–9PubMedCrossRefGoogle Scholar
  122. 122.
    Mattes RD. Influences on acceptance of bitter foods and beverages. Physiol Behav 1994; 56(6): 1229–36PubMedCrossRefGoogle Scholar
  123. 123.
    Liem DG, De GC. Sweet and sour preferences in young children and adults: role of repeated exposure. Physiol Behav 2004; 83(3): 421–9PubMedCrossRefGoogle Scholar
  124. 124.
    Liem DG, Bogers RP, Dagnelie PC, et al. Fruit consumption of boys (8–11 years) is related to preferences for sour taste. Appetite 2006; 46(1): 93–6PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2008

Authors and Affiliations

  • Richard L. Doty
    • 1
  • Muhammad Shah
    • 1
  • Steven M. Bromley
    • 1
    • 2
  1. 1.Smell and Taste CenterUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Cooper University HospitalUniversity of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical SchoolCamdenUSA

Personalised recommendations