Skip to main content
Log in

Mitochondrial Disorders among Infants Exposed to HIV and Antiretroviral Therapy

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Although antiretroviral therapy (ART) is critical for preventing mother-to-child transmission of HIV, concern has been raised about the possibility that it may cause mitochondrial dysfunction in infants. There is adequate evidence for a mechanism by which exposure to nucleoside reverse transcriptase inhibitors (NRTIs) could lead to mitochondrial dysfunction; animal studies have shown evidence of mitochondrial dysfunction in the offspring of animals treated with NRTIs and mitochondrial disorders occur in adults treated with NRTIs. This systematic review synthesises the published research on mitochondrial dysfunction and disorders in infants exposed to HIV and antiretrovirals.

We found conflicting evidence regarding the possible association of in utero ART exposure with mortality and morbidity due to mitochondrial dysfunction. ART exposure in utero or postpartum was associated with persistent decreases in lymphocytes, neutrophils and platelets as well as an increased risk of transient lactic acidaemia, anaemia and mitochondrial DNA depletion, although these laboratory findings were generally not associated with clinical symptoms.

We conclude that large, prospective studies of HIV-exposed infants are needed to resolve the discrepant results regarding morbidity and mortality related to mitochondrial disorders, to ascertain the clinical significance of effects on laboratory values, to determine whether or not the incidence of mitochondrial disorders differs by regimen and to develop predictive models that might identify which infants are at the greatest risk. The challenges that remain to be addressed include the development of a sensitive but affordable screening algorithm in combination with specific diagnostic criteria; consistent collection of data on ART exposure and other risk factors, long-term follow-up of HIV-exposed but uninfected children and implementation in resource-limited settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I.
Table II.

Similar content being viewed by others

References

  1. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 1994; 331(18): 1173–80

    Article  PubMed  CAS  Google Scholar 

  2. Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. The Working Group on Mother-To-Child Transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8 (5): 506–10

  3. Mofenson LM. Perinatal exposure to zidovudine: benefits and risks. N Engl J Med 2000; 343(11): 803–5

    Article  PubMed  CAS  Google Scholar 

  4. Blanche S, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 1999; 354(9184): 1084–9

    Article  PubMed  CAS  Google Scholar 

  5. Venerosi A, Calamandrei G, Alleva E. Animal models of anti-HIV drugs exposure during pregnancy: effects on neurobehavioral development. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26(4): 747–61

    Article  PubMed  CAS  Google Scholar 

  6. Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2003; 2(10): 812–22

    Article  PubMed  CAS  Google Scholar 

  7. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med 1995; 1(5): 417–22

    Article  PubMed  CAS  Google Scholar 

  8. Darin N, Oldfors A, Moslemi AR, et al. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA anbormalities. Ann Neurol 2001; 49(3): 377–83 858

    Article  PubMed  CAS  Google Scholar 

  9. Uusimaa J, Remes AM, Rantala H, et al. childhood encephalo-pathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics 2000; 105(3): 598–603

    Article  PubMed  CAS  Google Scholar 

  10. Applegarth DA, Toone JR, Lowry RB. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics 2000; 105(1): e10

    Article  PubMed  CAS  Google Scholar 

  11. Dionisi-Vici C, Rizzo C, Burlina AB, et al. Inborn errors of metabolism in the Italian pediatric population: a national retrospective survey. J Pediatr 2002; 140(3): 321–7

    Article  PubMed  Google Scholar 

  12. Bernier FP, Boneh A, Dennett X, et al. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 2002; 59(9): 1406–11

    Article  PubMed  CAS  Google Scholar 

  13. Walker UA, Collins S, Byrne E. Respiratory chain encephalomyopathies: a diagnostic classification. Eur Neurol 1996; 36(5): 260–7

    Article  PubMed  CAS  Google Scholar 

  14. Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 2004; 114(4): 925–31

    Article  PubMed  Google Scholar 

  15. Casula M, Bosboom-Dobbelaer I, Smolders K, et al. Infection with HIV-1 induces a decrease in mtDNA. J Infect Dis 2005; 191(9): 1468–71

    Article  PubMed  CAS  Google Scholar 

  16. Miro O, Lopez S, Martinez E, et al. Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antire-trovirals. Clin Infect Dis 2004; 39(5): 710–6

    Article  PubMed  Google Scholar 

  17. Casula M, Weverling GJ, Wit FW, et al. Mitochondrial DNA and RNA increase in peripheral blood mononuclear cells from HIV-1-infected patients randomized to receive stavudine-containing or stavudine-sparing combination therapy. J Infect Dis 2005; 192(10): 1794–800

    Article  PubMed  CAS  Google Scholar 

  18. Miura T, Goto M, Hosoya N, et al. Depletion of mitochondrial DNA in HIV-1-infected patients and its amelioration by antiretroviral therapy. J Med Virol 2003; 70(4): 497–505

    Article  PubMed  CAS  Google Scholar 

  19. Cossarizza A, Moyle G. Antiretroviral nucleoside and nucleotide analogues and mitochondria. AIDS 2004; 18(2): 137–51

    Article  PubMed  CAS  Google Scholar 

  20. Richman DD, Fischl MA, Grieco MH, et al. The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex: a double-blind, placebo-controlled trial. N Engl J Med 1987; 317(4): 192–7

    Article  PubMed  CAS  Google Scholar 

  21. Nolan D, Mallal S. Complications associated with NRTI therapy: update on clinical features and possible pathogenic mechanisms. Antivir Ther 2004; 9(6): 849–63

    PubMed  CAS  Google Scholar 

  22. Lemberg DA, Palasanthiran P, Goode M, et al. Tolerabilities of antiretrovirals in paediatric HIV infection. Drug Saf 2002; 25(14): 973–91

    Article  PubMed  CAS  Google Scholar 

  23. Venhoff N, Walker UA. Mitochondrial disease in the offspring as a result of antiretroviral therapy. Expert Opin Drug Saf 2006; 5(3): 373–81

    Article  PubMed  CAS  Google Scholar 

  24. Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 2000; 22(6): 685–708

    Article  PubMed  CAS  Google Scholar 

  25. Lonergan JT, McComsey GA, Fisher RL, et al., on behalf of the ESS40010 (TARHEEL) Study Team. Lack of recurrence of hyperlactatemia in HIV-infected patients switched from stavudine to abacavir or zidovudine. J Acquir Immune Defic Syndr 2004; 36(4): 935–42

    Article  PubMed  CAS  Google Scholar 

  26. McComsey GA, Paulsen DM, Lonergan JT, et al. Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. AIDS 2005; 19(1): 15–23

    Article  PubMed  CAS  Google Scholar 

  27. Mhiri C, Baudrimont M, Bonne G, et al. Zidovudine myopathy: a distinctive disorder associated with mitochondrial dysfunction. Ann Neurol 1991; 29(6): 606–14

    Article  PubMed  CAS  Google Scholar 

  28. Barret B, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction in HIV-1-exposed but uninfected infants: clinical screening in a large prospective cohort. AIDS 2003; 17(12): 1769–85

    Article  PubMed  Google Scholar 

  29. Herman JS, Easterbrook PJ. The metabolic toxicities of antiretroviral therapy. Int J STD AIDS 2001; 12(9): 555–62

    Article  PubMed  CAS  Google Scholar 

  30. Brinkman K, Kakuda TN. Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? Curr Opin Infect Dis 2000; 13(1): 5–1

    Google Scholar 

  31. Volberding PA, Baker KR, Levine AM. Human immunodeficiency virus hematology. Hematology Am Soc Hematol Educ Program 2003: 294–313

  32. Gerschenson M, Erhart SW, Paik CY, et al. Fetal mitochondrial heart and skeletal muscle damage in Erythrocebus patas monkeys exposed in utero to 3′-azido-3′-deoxythymidine. AIDS Res Hum Retroviruses 2000; 16(7): 635–44

    Article  PubMed  CAS  Google Scholar 

  33. Ewings EL, Gerschenson M, St Claire MC, et al. Genotoxic and functional consequences of transplacental zidovudine exposure in fetal monkey brain mitochondria. J Acquir Immune Defic Syndr 2000; 24(2): 100–5

    PubMed  CAS  Google Scholar 

  34. Gerschenson M, Nguyen V, Ewings EL, et al. Mitochondrial toxicity in fetal Erythrocebus patas monkeys exposed trans-placentally to zidovudine plus lamivudine. AIDS Res Hum Retroviruses 2004; 20(1): 91–100

    Article  PubMed  CAS  Google Scholar 

  35. European Collaborative Study. Exposure to antiretroviral therapy in utero or early life: the health of uninfected children born to HIV-infected women. J Acquir Immune Defic Syndr 2003; 32(4): 380–7

    Article  Google Scholar 

  36. Nucleoside exposure in the children of HIV-infected women receiving antiretroviral drugs: absence of clear evidence for mitochondrial disease in children who died before 5 years of age in five United States cohorts. J Acquir Immune Defic Syndr 2000; 25 (3): 261–8

  37. Bulterys M, Nesheim S, Abrams EJ, et al. Lack of evidence of mitochondrial dysfunction in the offspring of HIV-infected women: retrospective review of perinatal exposure to antiretroviral drugs in the Perinatal AIDS Collaborative Transmission Study. Ann N Y Acad Sci 2000; 918: 212–21

    Article  PubMed  CAS  Google Scholar 

  38. Culnane M, Fowler M, Lee SS, et al. Lack of long-term effects of in utero exposure to zidovudine among uninfected children born to HIV-infected women. Pediatric AIDS Clinical Trials Group Protocol 219/076 Teams. JAMA 1999; 281(2): 151–7

    CAS  Google Scholar 

  39. Lipshultz SE, Easley KA, Orav EJ, et al. Absence of cardiac toxicity of zidovudine in infants. Pediatric Pulmonary and Cardiac Complications of Vertically Transmitted HIV Infection Study Group. N Engl J Med 2000; 343(11): 759–66

    CAS  Google Scholar 

  40. Bellón Cano JM, Sanchez-Ramon S, Ciria L, et al. The effects on infants of potent antiretroviral therapy during pregnancy: a report from Spain. Med Sci Monit 2004; 10 (5): CR179-84

  41. Chotpitayasunondh T, Vanprapar N, Simonds RJ, et al. Safety of late in utero exposure to zidovudine in infants born to human immunodeficiency virus-infected mothers: Bangkok. Bangkok Collaborative Perinatal HIV Transmission Study Group. Pediatrics 2001; 107(1): E5

    Article  PubMed  CAS  Google Scholar 

  42. Behrman R, Kliegman R, Jenson H. Nelson textbook of pediatrics. 17th ed. Philadelphia (PA): Saunders, 2004

    Google Scholar 

  43. Landreau-Mascaro A, Barret B, Mayaux MJ, et al. Risk of early febrile seizure with perinatal exposure to nucleoside analogues. Lancet 2002; 359(9306): 583–4859

    Article  PubMed  CAS  Google Scholar 

  44. Alimenti A, Burdge DR, Ogilvie GS, et al. Lactic acidemia in human immunodeficiency virus-uninfected infants exposed to perinatal antiretroviral therapy. Pediatr Infect Dis J 2003; 22(9): 782–9

    Article  PubMed  Google Scholar 

  45. Noguera A, Fortuny C, Munoz-Almagro C, et al. Hyperlactatemia in human immunodeficiency virus-uninfected infants who are exposed to antiretrovirals. Pediatrics 2004; 114(5): e598–603

    Article  PubMed  Google Scholar 

  46. Giaquinto C, De Romeo A, Giacomet V, et al. Lactic acid levels in children perinatally treated with antiretroviral agents to prevent HIV transmission. AIDS 2001; 15(8): 1074–5

    Article  PubMed  CAS  Google Scholar 

  47. Le Chenadec J, Mayaux MJ, Guihenneuc-Jouyaux C, et al. Perinatal antiretroviral treatment and hematopoiesis in HIV-uninfected infants. AIDS 2003; 17(14): 2053–61

    Article  PubMed  Google Scholar 

  48. European Collaborative Study. Levels and patterns of neutrophil cell counts over the first 8 years of life in children of HIV-1-infected mothers. AIDS 2004; 18(15): 2009–17

    Article  Google Scholar 

  49. Lambert JS, Nogueira SA, Abreu T, et al. A pilot study to evaluate the safety and feasibility of the administration of AZT/3TC fixed dose combination to HIV infected pregnant women and their infants in Rio de Janeiro, Brazil. Sex Transm Infect 2003; 79(6): 448–52

    Article  PubMed  CAS  Google Scholar 

  50. Fowler DA, Xie MY, Sommadossi JP. Protection and rescue from 2′,3′-dideoxypyrimidine nucleoside analog toxicity by hemin in human bone marrow progenitor cells. Antimicrob Agents Chemother 1996; 40(1): 191–5

    PubMed  CAS  Google Scholar 

  51. Gribaldo L, Malerba I, Collotta A, et al. Inhibition of CFU-E/ BFU-E by 3′-azido-3′-deoxythymidine, chlorpropamide, and protoporphirin IX Zinc (II): a comparison between direct exposure of progenitor cells and long-term exposure of bone marrow cultures. Toxicol Sci 2000; 58: 96–101

    Article  PubMed  CAS  Google Scholar 

  52. Panburana P, Sirinavin S, Phuapradit W, et al. Elective cesarean delivery plus short-course lamivudine and zidovudine for the prevention of mother-to-child transmission of human immunodeficiency virus type 1. Am J Obstet Gynecol 2004; 190(3): 803–8

    Article  PubMed  CAS  Google Scholar 

  53. Bridges KR. Sideroblastic anemia: a mitochondrial disorder. J Pediatr Hematol Oncol 1997; 19(4): 274–8

    Article  PubMed  CAS  Google Scholar 

  54. Poirier MC, Divi RL, Al-Harthi L, et al. Long-term mitochondrial toxicity in HIV-uninfected infants born to HIV-infected mothers. J Acquir Immune Defic Syndr 2003; 33(2): 175–83

    Article  PubMed  Google Scholar 

  55. Divi RL, Walker VE, Wade NA, et al. Mitochondrial damage and DNA depletion in cord blood and umbilical cord from infants exposed in utero to Combivir. AIDS 2004; 18(7): 1013–21

    Article  PubMed  CAS  Google Scholar 

  56. Shiramizu B, Shikuma KM, Kamemoto L, et al. Placenta and cord blood mitochondrial DNA toxicity in HIV-infected women receiving nucleoside reverse transcriptase inhibitors during pregnancy. J Acquir Immune Defic Syndr 2003; 32(4): 370–4

    Article  PubMed  CAS  Google Scholar 

  57. Martin AM, Hammond E, Nolan D, et al. Accumulation of mitochondrial DNA mutations in human immunodeficiency virus-infected patients treated with nucleoside-analogue reverse-transcriptase inhibitors. Am J Hum Genet 2003; 72(3): 549–60

    Article  PubMed  CAS  Google Scholar 

  58. Skladal D, Sudmeier C, Konstantopoulou V, et al. The clinical spectrum of mitochondrial disease in 75 pediatric patients. Clin Pediatr (Phila) 2003; 42(8): 703–10

    Article  CAS  Google Scholar 

  59. Moyle G. Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity. Clin Ther 2000; 22(8): 911–36; discussion 898

    Article  PubMed  CAS  Google Scholar 

  60. Report on the global AIDS epidemic. Geneva: UNAIDS; 2006 May [online]. Availble from URL: http://www.unaids.org/en/HIV_data/2006GlobalReport/default.asp [Accessed 2007 Aug 23]

  61. Brogly S, Ylitalo N, Mofenson L, et al. In utero nucleoside reverse transcriptase inhibitor exposure and signs of possible mitochondrial dysfunction in HIV-uninfected children in the pediatric AIDS clinical trials group protocols 219 & 219C [abstract no. THAB0103]. Programs & Abstracts from the XVI International AIDS Conference; 2006 Aug 13–18; Toronto (ON)

  62. Taha TE, Kumwenda NI, Hoover DR, et al. Nevirapine and zidovudine at birth to reduce perinatal transmission of HIV in an African setting: a randomized controlled trial. JAMA 2004; 292(2): 202–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by GlaxoSmithKline (GSK)Research & Development. We would like to thank the anonymouspeer reviewers who provided thoughtful and valuablesuggestions.

Dr Jonsson Funk conducted an early version of this review as a paid consultant for GSK. Dr Belinson was employed on a part-time basis by GSK while undertaking this work. Dr Morsheimer worked on this review as a paid consultant for GSK. Dr Pimenta and Dr Gibbons are employed full time by GSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Jonsson Funk.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, M.J., Belinson, S.E., Pimenta, J.M. et al. Mitochondrial Disorders among Infants Exposed to HIV and Antiretroviral Therapy. Drug-Safety 30, 845–859 (2007). https://doi.org/10.2165/00002018-200730100-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200730100-00004

Keywords

Navigation