Skip to main content
Log in

Safety and Toxicity of Sulfadoxine/Pyrimethamine

Implications for Malaria Prevention in Pregnancy using Intermittent Preventive Treatment

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Plasmodium falciparum infection during pregnancy is strongly associated with maternal anaemia and low birth weight, contributing to substantial morbidity and mortality in sub-Saharan Africa. Intermittent preventive treatment in pregnancy with sulfadoxine/pyrimethamine (IPTp-SP) has been one of the most effective approaches to reduce the burden of malaria during pregnancy in Africa. IPTp-SP is based on administering ≥2 treatment doses of sulfadoxine/pyrimethamine to pregnant women at predefined intervals after quickening (around 18–20 weeks). Randomised, controlled trials have demonstrated decreased rates of maternal anaemia and low birth weight with this approach. The WHO currently recommends IPTp-SP in malaria-endemic areas of sub-Saharan Africa. However, implementation has been suboptimal in part because of concerns of potential drug toxicities. This review evaluates the toxicity data of sulfadoxine/pyrimethamine, including severe cutaneous adverse reactions, teratogenicity and alterations in bilirubin metabolism. Weekly sulfadoxine/pyrimethamine prophylaxis is associated with rare but potentially fatal cutaneous reactions. Fortunately, sulfadoxine/pyrimethamine use in IPTp programmes in Africa, with 2–4 treatment doses over 6 months, has been well tolerated in multiple IPTp trials. However, sulfadoxine/pyrimethamine should not be administered concurrently with cotrimoxazole given their redundant mechanisms of action and synergistic worsening of adverse drug reactions. Therefore, HIV-infected pregnant women in malaria endemic areas who are already receiving cotrimoxazole prophylaxis should not also receive IPTp-SP. Although folate antagonist use in the first trimester is associated with neural tube defects, large case-control studies have demonstrated that sulfadoxine/pyrimethamine administered as IPTp (exclusively in the second and third trimesters and after organogenesis) does not result in an increased risk of teratogenesis. Folic acid supplementation is recommended for all pregnant women to reduce the rate of congenital anomalies but high doses of folic acid (5 mg/day) may interfere with the antimalarial efficacy of sulfadoxine/pyrimethamine. However, the recommended standard dose of folic acid supplementation (0.4 mg/day) does not affect antimalarial efficacy and may provide the optimal balance to prevent neural tube defects and maintain the effectiveness of IPTp-SP. No clinical association between sulfadoxine/pyrimethamine use and kernicterus has been reported despite the extensive use of sulfadoxine/pyrimethamine and related compounds to treat maternal malaria and congenital toxoplasmosis in near-term pregnant women and newborns. Although few drugs in pregnancy can be considered completely safe, sulfadoxine/pyrimethamine — when delivered as IPTp — has a favourable safety profile. Improved pharmacovigilance programmes throughout Africa are now needed to confirm its safety as access to IPTp-SP increases. Given the documented benefits of IPTp-SP in malaria endemic areas of Africa, access to this treatment for pregnant women should continue to expand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II

Similar content being viewed by others

Notes

  1. 1The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. WHO. Lives at risk: malaria in pregnancy [online]. Available from URL: http://www.who.int/features/2003/04b/en/ [Accessed 2006 Mar 6]

  2. Beeson JG, Brown GV. Plasmodium falciparum-imfected erythrocytes demonstrate dual specificity for adhesion to hyaluronic acid and chondroitin sulfate A and have distinct adhesive properties. J Infect Dis 2004 Jan 15; 189(2): 169–79

    PubMed  CAS  Google Scholar 

  3. Shulman CE, Graham WJ, Jilo H, et al. Malaria is an important cause of anaemia in primigravidae: evidence from a district hospital in coastal Kenya. Trans R Soc Trop Med Hyg 1996 Sep–Oct; 90(5): 535–9

    PubMed  CAS  Google Scholar 

  4. Cot M, le Hesran JY, Miailhes P, et al. Effect of chloroquine prophylaxis during pregnancy on maternal haematocrit. Ann Trop Med Parasitol 1998 Jan; 92(1): 37–43

    PubMed  CAS  Google Scholar 

  5. Steketee RW, Wirima JJ, Hightower AW, et al. The effect of malaria and malaria prevention in pregnancy on offspring birthweight, prematurity, and intrauterine growth retardation in rural Malawi. Am J Trop Med Hyg 1996; 55 (1 Suppl.): 33–41

    PubMed  CAS  Google Scholar 

  6. Sullivan AD, Nyirenda T, Cullinan T, et al. Malaria infection during pregnancy: intrauterine growth retardation and preterm delivery in Malawi. J Infect Dis 1999 Jun; 179(6): 1580–3

    PubMed  CAS  Google Scholar 

  7. Steketee RW, Nahlen BL, Parise ME, et al. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg 2001 Jan–Feb; 64 (1-2 Suppl.): 28–35

    PubMed  CAS  Google Scholar 

  8. Guyatt HL, Snow RW. The epidemiology and burden of Plasmodium falciparum-related anemia among pregnant women in sub-Saharan Africa. Am J Trop Med Hyg 2001 Jan–Feb; 64 (1–2 Suppl.): 36–44

    PubMed  CAS  Google Scholar 

  9. Marchesini P, Crawley J. Reducing the burden of malaria in pregnancy [online]. Available from URL: http://www.who.int/malaria/rbm/Attachment/20040713/MeraJan2003.pdf [Accessed 2006 Jan 6]

  10. Steketee RW, Wirima JJ, Slutsker L, et al. Malaria treatment and prevention in pregnancy: indications for use and adverse events associated with use of chloroquine or mefloquine. Am J Trop Med Hyg 1996; 55 (1 Suppl.): 50–6

    PubMed  CAS  Google Scholar 

  11. Sirima SB, Sawadogo R, Moran AC, et al. Failure of a chloroquine chemoprophylaxis program to adequately prevent malaria during pregnancy in Koupela District, Burkina Faso. Clin Infect Dis 2003 Jun 1; 36(11): 1374–82

    PubMed  CAS  Google Scholar 

  12. WHO. WHO Expert Committee on Malaria. World Health Organ Tech Rep Ser 2000; 92: i-v, 1–74

    Google Scholar 

  13. World Health Organization. A strategic framework for malaria prevention and control during pregnancy in the African region. Brazzaville: WHO Regional Office for Africa, 2004. AFR/ MAL/04/01 [online]. Available from URL: http://www.cdc.gov/malaria/pdf/strategic_framework_mip_04.pdf [Accessed 2006 Jan 6]

  14. Kayentao K, Kodio M, Newman RD, et al. Comparison of intermittent preventive treatment with chemoprophylaxis for the prevention of malaria during pregnancy in Mali. J Infect Dis 2005 Jan 1; 191(1): 109–16

    PubMed  Google Scholar 

  15. Shulman CE, Dorman EK, Cutts F, et al. Intermittent sulphadoxine-pyrimethamine to prevent severe anaemia secondary to malaria in pregnancy: a randomised placebo-controlled trial. Lancet 1999 Feb 20; 353(9153): 632–6

    PubMed  CAS  Google Scholar 

  16. Njagi JK, Magnussen P, Estambale B, et al. Prevention of anaemia in pregnancy using insecticide-treated bednets and sulfadoxine-pyrimethamine in a highly malarious area of Kenya: a randomized controlled trial. Trans R Soc Trop Med Hyg 2003 May–Jun; 97(3): 277–82

    PubMed  CAS  Google Scholar 

  17. Parise ME, Ayisi JG, Nahlen BL, et al. Efficacy of sulfadoxinepyrimethamine for prevention of placental malaria in an area of Kenya with a high prevalence of malaria and human immunodeficiency virus infection. Am J Trop Med Hyg 1998 Nov; 59(5): 813–22

    PubMed  CAS  Google Scholar 

  18. Schultz LJ, Steketee RW, Macheso A, et al. The efficacy of antimalarial regimens containing sulfadoxine-pyrimethamine and/or chloroquine in preventing peripheral and placental Plasmodium falciparum infection among pregnant women in Malawi. Am J Trop Med Hyg 1994 Nov; 51(5): 515–22

    PubMed  CAS  Google Scholar 

  19. Challis K, Osman NB, Cotiro M, et al. Impact of a double dose of sulphadoxine-pyrimethamine to reduce prevalence of pregnancy malaria in southern Mozambique. Trop Med Int Health 2004 Oct; 9(10): 1066–73

    PubMed  CAS  Google Scholar 

  20. van Eijk AM, Ayisi JG, ter Kuile FO, et al. Effectiveness of intermittent preventive treatment with sulphadoxinepyrimethamine for control of malaria in pregnancy in western Kenya: a hospital-based study. Trop Med Int Health 2004 Mar; 9(3): 351–60

    PubMed  Google Scholar 

  21. Rogerson SJ, Chaluluka E, Kanjala M, et al. Intermittent sulfadoxine-pyrimethamine in pregnancy: effectiveness against malaria morbidity in Blantyre, Malawi, in 1997–99. Trans R Soc Trop Med Hyg 2000 Sep–Oct; 94(5): 549–53

    PubMed  CAS  Google Scholar 

  22. Filler SJ, Kazembe P, Thigpen M, et al. Randomized trial of 2-dose versus monthly sulfadoxine-pyrimethamine intermittent preventive treatment for Malaria in HIV-positive and HIV-negative pregnant women in Malawi. J Infect Dis 2006 Aug 1; 194(3): 286–93

    PubMed  CAS  Google Scholar 

  23. Sirima SB, Cotte AH, Konate A, et al. Malaria prevention during pregnancy: assessing the disease burden one year after implementing a program of intermittent preventive treatment in Koupela District, Burkina Faso. Am J Trop Med Hyg 2006 Aug; 75(2): 205–11

    PubMed  Google Scholar 

  24. Verhoeff FH, Brabin BJ, Chimsuku L, et al. An evaluation of the effects of intermittent sulfadoxine-pyrimethamine treatment in pregnancy on parasite clearance and risk of low birthweight in rural Malawi. Ann Trop Med Parasitol 1998 Mar; 92(2): 141–50

    PubMed  CAS  Google Scholar 

  25. WHO/AFRO. Global Antimalarial Drug Database [online]. Available from URL: http://www.who.int/malaria/amdp/amdp_afro.htm [Accessed 2007 Jan 10]

  26. Korenromp E, Miller J, Nahlen B, et al., for World Health Organization (WHO). World Malaria Report 2005 [online]. Available from URL: http://rbm.who.int/wmr2005/index.html [Accessed 2007 Jan 10]

  27. Dodoo A. Safety challenges of preventing malaria during pregnancy. WHO Drug Information 2005; 19(4): 286–7 [online]. Available from URL: http://www.who.int/druginformation/vol19num4_2005/DI19-4.pdf [Accessed 2007 Jan 10]

    Google Scholar 

  28. Nosten F, McGready R, Looareesuwan S, et al. Editorial: Maternal malaria: time for action. Trop Med Int Health 2003 Jun; 8(6): 485–7

    PubMed  Google Scholar 

  29. Hill J, Kazembe P. Reaching the Abuja target for intermittent preventive treatment of malaria in pregnancy in African women: a review of progress and operational challenges. Trop Med Int Health 2006 Apr; 11(4): 409–18

    PubMed  Google Scholar 

  30. Mubyazi G, Bloch P, Kamugisha M, et al. Intermittent preventive treatment of malaria during pregnancy: a qualitative study of knowledge, attitudes and practices of district health managers, antenatal care staff and pregnant women in Korogwe District, North-Eastern Tanzania. Malar J 2005; 4: 31

    PubMed  Google Scholar 

  31. Mbonye AK, Neema S, Magnussen P. Perceptions on use of sulfadoxine-pyrimethamine in pregnancy and the policy implications for malaria control in Uganda. Health Policy 2006 Aug; 77(3): 279–89

    PubMed  Google Scholar 

  32. Sibley CH, Hyde JE, Sims PF, et al. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 2001 Dec; 17(12): 582–8

    PubMed  CAS  Google Scholar 

  33. Nzila A, Ward SA, Marsh K, et al. Comparative folate metabolism in humans and malaria parasites (part I): pointers for malaria treatment from cancer chemotherapy. Trends Parasitol 2005 Jun; 21(6): 292–8

    PubMed  CAS  Google Scholar 

  34. Hyde JE. Exploring the folate pathway in Plasmodium falciparum. Acta Trop 2005 Jun; 94(3): 191–206

    PubMed  CAS  Google Scholar 

  35. Ferone R, Burchall JJ, Hitchings GH. Pkismodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol 1969 Jan; 5(1): 49–59

    PubMed  CAS  Google Scholar 

  36. Zhang K, Rathod PK. Divergent regulation of dihydrofolate reductase between malaria parasite and human host. Science 2002 Apr 19; 296(5567): 545–7

    PubMed  CAS  Google Scholar 

  37. Hitchings GH, Burchall JJ. Inhibition of folate biosynthesis and function as a basis for chemotherapy. Adv Enzymol Relat Areas Mol Biol 1965; 27: 417–68 497

    PubMed  CAS  Google Scholar 

  38. Watkins WM, Mberu EK, Winstanley PA, et al. The efficacy of antifolate antimalarial combinations in Africa: a predictive model based on pharmacodynamic and pharmacokinetic analyses. Parasitol Today 1997 Dec; 13(12): 459–64

    PubMed  CAS  Google Scholar 

  39. Rollo IM. The mode of action of sulphonamides, proguanil and pyrimethamine on Plasmodium gallinaceum. Br J Pharmacol Chemother 1955 Jun; 10(2): 208–14

    PubMed  CAS  Google Scholar 

  40. Hurly MG. Potentiation of pyrimethamine by sulphadiazine in human malaria. Trans R Soc Trop Med Hyg 1959 Sep; 53: 412–3

    PubMed  CAS  Google Scholar 

  41. Weidekamm E, Plozza-Nottebrock H, Forgo I, et al. Plasma concentrations in pyrimethamine and sulfadoxine and evaluation of pharmacokinetic data by computerized curve fitting. Bull World Health Organ 1982; 60(1): 115–22

    PubMed  CAS  Google Scholar 

  42. Edstein MD. Pharmacokinetics of sulfadoxine and pyrimethamine after Fansidar administration in man. Chemotherapy 1987; 33(4): 229–33

    PubMed  CAS  Google Scholar 

  43. PDR guide to drug interactions, side effects, indications, contraindications. Montvale (NJ): Medical Economics, 1997: 2281–2

  44. Barnes KI, Little F, Smith PJ, et al. Sulfadoxine-pyrimethamine pharmacokinetics in malaria: pediatric dosing implications. Clin Pharmacol Ther 2006 Dec; 80(6): 582–96

    PubMed  CAS  Google Scholar 

  45. Corvaisier S, Charpiat B, Mounier C, et al. Population pharmacokinetics of pyrimethamine and sulfadoxine in children treated for congenital toxoplasmosis. Antimicrob Agents Chemother 2004 Oct; 48(10): 3794–800

    PubMed  CAS  Google Scholar 

  46. Hellgren U, Kihamia CM, Bergqvist Y, et al. Standard and reduced doses of sulfadoxine-pyrimethamine for treatment of Plasmodium falciparum in Tanzania, with determination of drug concentrations and susceptibility in vitro. Trans R Soc Trop Med Hyg 1990 Jul–Aug; 84(4): 469–72

    PubMed  CAS  Google Scholar 

  47. Winstanley PA, Watkins WM, Newton CR, et al. The disposition of oral and intramuscular pyrimethamine/sulphadoxine in Kenyan children with high parasitaemia but clinically non-severe falciparum malaria. Br J Clin Pharmacol 1992 Feb; 33(2): 143–8

    PubMed  CAS  Google Scholar 

  48. Trenque T, Marx C, Quereux C, et al. Human maternofoetal distribution of pyrimethamine-sulphadoxine. Br J Clin Pharmacol 1998 Feb; 45(2): 179–80

    PubMed  CAS  Google Scholar 

  49. Peytavin G, Leng JJ, Forestier F, et al. Placental transfer of pyrimethamine studied in an ex vivo placental perfusion model. Biol Neonate 2000; 78(2): 83–5

    PubMed  CAS  Google Scholar 

  50. Roche. Fansidar® brand of sulfadoxine and pyrimethamine tablets: complete product information [online]. Available from URL: http://www.rocheusa.com/products/fansidar/ [Accessed 2006 May 7]

  51. Ringwald P, Global Partnership to Roll Back Malaria. Susceptibility of plasmodium falciparum to antimalarial drugs: report on global monitoring, 1996–2004. Geneva: World Health Organization, 2005

    Google Scholar 

  52. White NJ. Intermittent presumptive treatment for malaria. PLoS Med 2005 Jan; 2(1): e3

    PubMed  Google Scholar 

  53. Gregson A, Plowe CV. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 2005 Mar; 57(1): 117–45

    PubMed  CAS  Google Scholar 

  54. Hankins EG, Warhurst DC, Sibley CH. Novel alleles of the Plasmodium falciparum dhfr highly resistant to pyrimethamine and chlorcycloguanil, but not WR 99210. Mol Biochem Parasitol 2001 Sep 28; 117(1): 91–102

    PubMed  CAS  Google Scholar 

  55. McCollum AM, Poe AC, Hamel M, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles. J Infect Dis 2006 Jul 15; 194(2): 189–97

    PubMed  CAS  Google Scholar 

  56. Nzila A, Ochong E, Nduati E, et al. Why has the dihydrofolate reductase 164 mutation not consistently been found in Africa yet? Trans R Soc Trop Med Hyg 2005 May; 99(5): 341–6

    PubMed  CAS  Google Scholar 

  57. Bioland PB, Ringwald P, Snow RW, World Health Organization. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria. Geneva: World Health Organization, 2003

    Google Scholar 

  58. Kalanda GC, Hill J, Verhoeff FH, et al. Comparative efficacy of chloroquine and sulphadoxine: pyrimethamine in pregnant women and children: a meta-analysis. Trop Med Int Health 2006 May; 11(5): 569–77

    PubMed  CAS  Google Scholar 

  59. Plowe CV, Kublin JG, Dzinjalamala FK, et al. Sustained clinical efficacy of sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Malawi after 10 years as first line treatment: five year prospective study. BMJ 2004 Mar 6; 328(7439): 545

    PubMed  CAS  Google Scholar 

  60. Chandramohan D, Owusu-Agyei S, Carneiro I, et al. Cluster randomised trial of intermittent preventive treatment for malaria in infants in area of high, seasonal transmission in Ghana. BMJ 2005 Oct 1; 331(7519): 727–33

    PubMed  Google Scholar 

  61. Matthews JI, Molitor JT, Hunt KK, et al. Pyrimethamine-induced leukopenia and thrombocytopenia in a patient with malaria and tropical sprue: case report. Mil Med 1973 May; 138(5): 280–3

    PubMed  CAS  Google Scholar 

  62. Goodman LS, Gilman A, Brunton LL, et al. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill, 2006

    Google Scholar 

  63. Waxman S, Metz J, Herbert V. Defective DNA synthesis in human megaloblastic bone marrow: effects of homocysteine and methionine. J Clin Invest 1969 Feb; 48(2): 284–9

    PubMed  CAS  Google Scholar 

  64. Khoo KK. The treatment of malaria in glucose-6-phosphate dehydrogenase deficient patients in Sabah. Ann Trop Med Parasitol 1981 Dec; 75(6): 591–5

    PubMed  CAS  Google Scholar 

  65. Bjorkman A, Phillips-Howard PA. Adverse reactions to sulfa drugs: implications for malaria chemotherapy. Bull World Health Organ 1991; 69(3): 297–304

    PubMed  CAS  Google Scholar 

  66. Miller KD, Lobel HO, Satriale RF, et al. Severe cutaneous reactions among American travelers using pyrimethamine-sulfadoxine (Fansidar) for malaria prophylaxis. Am J Trop Med Hyg 1986 May; 35(3): 451–8

    PubMed  CAS  Google Scholar 

  67. Aguemon AR, Houngbe F, Yameogo TM, et al. Toxic epidermal necrolysis. Epidemiologic, clinic and therapeutic aspects at Cotonou University and National Teaching Hospital [in French]. Ann Fr Anesth Reanim 2006 May; 25(5): 505–9

    PubMed  Google Scholar 

  68. Oduro-Boatey C, Rodrigues O. Stevens-Johnson syndrome in two children in Ghana following anti-malarial treatment. Trop Doct 2005 Apr; 35(2): 118–9

    PubMed  CAS  Google Scholar 

  69. Nair SS, Kaplan JM, Levine LH, et al. Trimethoprimsulfamethoxazole-induced intrahepatic cholestasis. Ann Intern Med 1980 Apr; 92(4): 511–2

    PubMed  CAS  Google Scholar 

  70. Munoz SJ, Martinez-Hernandez A, Maddrey WC. Intrahepatic cholestasis and phospholipidosis associated with the use of trimethoprim-sulfamethoxazole. Hepatology 1990 Aug; 12(2): 342–7

    PubMed  CAS  Google Scholar 

  71. Thies PW, Dull WL. Trimethoprim-sulfamethoxazole-induced cholestatic hepatitis. Inadvertent rechallenge. Arch Intern Med 1984 Aug; 144(8): 1691–2

    PubMed  CAS  Google Scholar 

  72. Zitelli BJ, Alexander J, Taylor S, et al. Fatal hepatic necrosis due to pyrimethamine-sulfadoxine (Fansidar). Ann Intern Med 1987 Mar; 106(3): 393–5

    PubMed  CAS  Google Scholar 

  73. McCormack D, Morgan WK. Fansidar hypersensitivity pneumonitis. Br J Dis Chest 1987 Apr; 81(2): 194–6 498

    PubMed  CAS  Google Scholar 

  74. Svanbom M, Rombo L, Gustafsson L. Unusual pulmonary reaction during short term prophylaxis with pyrimethamine-sulfadoxine (Fansidar). BMJ (Clin Res Ed). 1984 Jun 23; 288(6434): 187

    Google Scholar 

  75. Hellgren U, Rombo L, Berg B, et al. Adverse reactions to sulphadoxine-pyrimethamine in Swedish travellers: implications for prophylaxis. BMJ (Clin Res Ed) 1987 Aug 8; 295(6594): 365–6

    CAS  Google Scholar 

  76. Phillips-Howard PA, West LJ. Serious adverse drug reactions to pyrimethamine-sulphadoxine, pyrimethamine-dapsone and to amodiaquine in Britain. J R Soc Med 1990 Feb; 83(2): 82–5

    PubMed  CAS  Google Scholar 

  77. Steffen R, Somaini B. Severe cutaneous adverse reactions to sulfadoxine-pyrimethamine in Switzerland. Lancet 1986 Mar 15; 1(8481): 610

    PubMed  CAS  Google Scholar 

  78. World Health Organization. WHO Collaborating Centre for International Drug Monitoring. The importance of pharmacovigilance. Geneva: World Health Organization Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, 2002

  79. Gimnig JE, MacArthur JR, M’Bang’ombe M, et al. Severe cutaneous reactions to sulfadoxine-pyrimethamine and trimethoprim-sulfamethoxazole in Blantyre District, Malawi. Am J Trop Med Hyg 2006 May; 74(5): 738–43

    PubMed  CAS  Google Scholar 

  80. Hernborg A. Stevens-Johnson syndrome after mass prophylaxis with sulfadoxine for cholera in Mozambique. Lancet 1985 Nov 9; 2(8463): 1072–3

    PubMed  CAS  Google Scholar 

  81. Shear NH, Spielberg SP, Grant DM, et al. Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity. Ann Intern Med 1986 Aug; 105(2): 179–84

    PubMed  CAS  Google Scholar 

  82. Holtz TH, Kachur SP, Roberts JM, et al. Use of antenatal care services and intermittent preventive treatment for malaria among pregnant women in Blantyre District, Malawi. Trop Med Int Health 2004 Jan; 9(1): 77–82

    PubMed  Google Scholar 

  83. UNAIDS. AIDS epidemic update: December 2005 [online]. Available from URL: http://www.unaids.org/epi/2005/doc/report_pdf.asp [Accessed 2006 Mar 6]

  84. ter Kuile FO, Parise ME, Verhoeff FH, et al. The burden of co-infection with human immunodeficiency virus type 1 and malaria in pregnant women in sub-saharan Africa. Am J Trop Med Hyg 2004 Aug; 71 (2 Suppl.): 41–54

    PubMed  Google Scholar 

  85. Moore JM, Ayisi J, Nahlen BL, et al. Immunity to placental malaria: II. Placental antigen-specific cytokine responses are impaired in human immunodeficiency virus-infected women. J Infect Dis 2000 Sep; 182(3): 960–4

    PubMed  CAS  Google Scholar 

  86. Chaisavaneeyakorn S, Moore JM, Otieno J, et al. Immunity to placental malaria: III. Impairment of interleukin(IL)-12, not IL-18, and interferon-inducible protein-10 responses in the placental intervillous blood of human immunodeficiency virus/malaria-coinfected women. J Infect Dis 2002 Jan 1; 185(1): 127–31

    PubMed  CAS  Google Scholar 

  87. Mount AM, Mwapasa V, Elliott SR, et al. Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet 2004 Jun 5; 363(9424): 1860–7

    PubMed  Google Scholar 

  88. Steketee RW, Wirima JJ, Bioland PB, et al. Impairment of a pregnant woman’s acquired ability to limit Plasmodium falciparum by infection with human immunodeficiency virus type-1. Am J Trop Med Hyg 1996; 55 (1 Suppl.): 42–9

    PubMed  CAS  Google Scholar 

  89. WHO. Malaria and HIV interactions and their implications for public health policy [online]. Available from URL: http://www.who.int/malaria/malariandhivaids.html [Accessed 2006 Mar 5]

  90. Lee BL, Wong D, Benowitz NL, et al. Altered patterns of drug metabolism in patients with acquired immunodeficiency syndrome. Clin Pharmacol Ther 1993 May; 53(5): 529–35

    PubMed  CAS  Google Scholar 

  91. Carr A, Gross AS, Hoskins JM, et al. Acetylation phenotype and cutaneous hypersensitivity to trimethoprim-sulphamethoxazole in HIV-infected patients. Aids 1994 Mar; 8(3): 333–7

    PubMed  CAS  Google Scholar 

  92. Carr A, Tindall B, Penny R, et al. In vitro cytotoxicity as a marker of hypersensitivity to sulphamethoxazole in patients with HIV. Clin Exp Immunol 1993 Oct; 94(1): 21–5

    PubMed  CAS  Google Scholar 

  93. Carr A, Vasak E, Munro V, et al. Immunohistological assessment of cutaneous drug hypersensitivity in patients with HIV infection. Clin Exp Immunol 1994 Aug; 97(2): 260–5

    PubMed  CAS  Google Scholar 

  94. Wiktor SZ, Sassan-Morokro M, Grant AD, et al. Efficacy of trimethoprim-sulphamethoxazole prophylaxis to decrease morbidity and mortality in HIV-1-infected patients with tuberculosis in Abidjan, Cote d’Ivoire: a randomised controlled trial. Lancet 1999 May 1; 353(9163): 1469–75

    PubMed  CAS  Google Scholar 

  95. Mermin J, Lule J, Ekwaru JP, et al. Effect of co-trimoxazole prophylaxis on morbidity, mortality, CD4-cell count, and viral load in HIV infection in rural Uganda. Lancet 2004 Oct 16–22; 364(9443): 1428–34

    PubMed  CAS  Google Scholar 

  96. Chintu C, Bhat GJ, Walker AS, et al. Co-trimoxazole as prophylaxis against opportunistic infections in HIV-infected Zambian children (CHAP): a double-blind randomised placebo-controlled trial. Lancet 2004 Nov 20–26; 364(9448): 1865–71

    PubMed  CAS  Google Scholar 

  97. Walter J, Mwiya M, Scott N, et al. Reduction in preterm delivery and neonatal mortality after the introduction of antenatal cotrimoxazole prophylaxis among HIV-infected women with low CD4 cell counts. J Infect Dis 2006 Dec 1; 194(11): 1510–8

    PubMed  CAS  Google Scholar 

  98. WHO. Guidelines for cotrimoxazole prophylaxis for HIV-related infections in children, adolescents and adults in resource limited settings [online]. Available from URL: http://www.who.int/hiv/pub/guidelines/ctxguidelines.pdf [Accessed 2006 Mar 5]

  99. UNAIDS/WHO. Provisional WHO/UNAIDS secreteriat recommendations on the widespread use of co-trimoxazole prophylaxis in adults and children living with HIV/AIDS in Africa, 2000 [online]. Available from URL: http://www.unaids.org/publications/documents/care/general/recommendationeng.pdf [Accessed 2006 Mar 6]

  100. Anglaret X, Chene G, Attia A, et al. Early chemoprophylaxis with trimethoprim-sulphamethoxazole for HIV-1-infected adults in Abidjan, Cote d’Ivoire: a randomised trial. Cotrimo-CI Study Group. Lancet 1999 May 1; 353(9163): 1463–8

    PubMed  CAS  Google Scholar 

  101. Thera MA, Sehdev PS, Coulibaly D, et al. Impact of trimethoprim-sulfamethoxazole prophylaxis on falciparum malaria infection and disease. J Infect Dis 2005 Nov 15; 192(10): 1823–9

    PubMed  CAS  Google Scholar 

  102. Malamba SS, Mermin J, Reingold A, et al. Effect of cotrimoxazole prophylaxis taken by human immunodeficiency virus (HlV)-infected persons on the selection of sulfadoxinepyrimethamine-resistant malaria parasites among HIV-uninfected household members. Am J Trop Med Hyg 2006 Sep; 75(3): 375–80

    PubMed  CAS  Google Scholar 

  103. Brentlinger PE, Behrens CB, Micek MA. Challenges in the concurrent management of malaria and HIV in pregnancy in sub-Saharan Africa. Lancet Infect Dis 2006 Feb; 6(2): 100–11

    PubMed  Google Scholar 

  104. Maynart M, Lievre L, Sow PS, et al. Primary prevention with cotrimoxazole for HIV-1-infected adults: results of the pilot study in Dakar, Senegal. J Acquir Immune Defic Syndr 2001 Feb 1; 26(2): 130–6

    PubMed  CAS  Google Scholar 

  105. Watera C, Todd J, Muwonge R, et al. Feasibility and effectiveness of cotrimoxazole prophylaxis for HIV-1-infected adults attending an HIV/AIDS clinic in Uganda. J Acquir Immune Defic Syndr 2006 Jul; 42(3): 373–8 499

    PubMed  CAS  Google Scholar 

  106. Zachariah R, Spielmann MP, Chinji C, et al. Voluntary counselling, HIV testing and adjunctive cotrimoxazole reduces mortality in tuberculosis patients in Thyolo, Malawi. AIDS 2003 May 2; 17(7): 1053–61

    PubMed  CAS  Google Scholar 

  107. Grimwade K, Sturm AW, Nunn AJ, et al. Effectiveness of cotrimoxazole prophylaxis on mortality in adults with tuberculosis in rural South Africa. AIDS 2005 Jan 28; 19(2): 163–8

    PubMed  CAS  Google Scholar 

  108. Raviglione MC, Dinan WA, Pablos-Mendez A, et al. Fatal toxic epidermal necrolysis during prophylaxis with pyrimethamine and sulfadoxine in a human immunodeficiency virus-infected person. Arch Intern Med 1988 Dec; 148(12): 2683–5

    PubMed  CAS  Google Scholar 

  109. Fansidar-associated fatal reaction in an HIV-infected man. MMWR Morb Mortal Wkly Rep 1988 Sep 23; 37(37): 571–2, 7

  110. Teira R, Virosta M, Munoz J, et al. The safety of pyrimethamine and sulfadoxine for the prevention of Pneumocystis carinii pneumonia. Scand J Infect Dis 1997; 29(6): 595–6

    PubMed  CAS  Google Scholar 

  111. Schurmann D, Bergmann F, Albrecht H, et al. Effectiveness of twice-weekly pyrimethamine-sulfadoxine as primary prophylaxis of Pneumocystis carinii pneumonia and toxoplasmic encephalitis in patients with advanced HIV infection. Eur J Clin Microbiol Infect Dis 2002 May; 21(5): 353–61

    PubMed  CAS  Google Scholar 

  112. Hamer DH, Mwanakasale V, Chalwe V, et al. Intermittent presumptive therapy of malaria with SP in HIV-seropositive Zambian women: a placebo-controlled, randomized trial [abstract no. 54]. 54th Annual Meeting of the American Society Tropical Medicine and Hygiene; 2005 Dec 11–15; Washington, DC

  113. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991 Jul 20; 338(8760): 131–7

    Google Scholar 

  114. Berry RJ, Li Z, Erickson JD, et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 1999 Nov 11; 341(20): 1485–90

    PubMed  CAS  Google Scholar 

  115. Bohni E, Fust B, Rieder J, et al. Comparative toxicological, chemotherapeutic and pharmacokinetic studies with sulphormethoxine and other sulphonamides in animals and man. Chemotherapy 1969; 14(4): 195–226

    PubMed  CAS  Google Scholar 

  116. Bertazzoli C, Chieli T, Grandi M. Absence of tooth malformation in offspring of rats treated with a long-acting sulphonamide. Experientia 1965 Mar 15; 21(3): 151–2

    PubMed  CAS  Google Scholar 

  117. Kato T, Kitagawa S. Production of congenital anomalies in fetuses of rats and mice with various sulfonamides. Cong Anom 1973; 13(1): 7–15

    Google Scholar 

  118. Suzuki Y, Wakita Y, Kondo S, et al. Effects of sulfamethopyrazine administered to pregnant animals upon the development of their fetuses and neonates. Oyo Yakuri 1973; 7: 1005–19

    CAS  Google Scholar 

  119. Wolkowski-Tyl R, Jones-Price C, Kimmel C, et al. Teratologic evaluation of sulfamethazine in CD rats. Teratology 1982; 25: 81A-2A

    Google Scholar 

  120. Kato T, Kitagawa S. Production of congenital skeletal anomalies in the fetuses of pregnant rats and mice treated with various sulfonamides. Cong Anom 1973; 13(1): 17–23

    Google Scholar 

  121. Paget GE, Thorpe E. A teratogenic effect of a sulphonamide in experimental animals. Br J Pharmacol Chemother 1964 Oct; 23: 305–12

    PubMed  CAS  Google Scholar 

  122. Uche-Nwachi EO, Caxton-Martins AE. Sulfadoxinepyrimethamine embryopathy in Wistar rats. Kaibogaku Zasshi 1998 Apr; 73(2): 135–9

    PubMed  CAS  Google Scholar 

  123. Dyban AP, Akimova IM, Svetlova VA. Embryonal development of rats acted upon with 2,4-diamino-5-chlorphenyl-6-ethylpyrimidine [in Russian]. Dokl Akad Nauk SSSR 1965 Aug 21; 163(6): 1514–7

    PubMed  CAS  Google Scholar 

  124. Sullivan GE, Takacs E. Comparative teratogenicity of pyrimethamine in rats and hamsters. Teratology 1971; 4(2): 205–9

    CAS  Google Scholar 

  125. Anderson I, Morse LM. The influence of solvent on the teratogenic effect of folic acid antagonist in the rat. Exp Mol Pathol 1966 Apr; 5(2): 134–45

    PubMed  CAS  Google Scholar 

  126. Schvartsman S. Teratogenicity of pyrimethamine. Toxicol Applied Pharmacol 1979; 48: A123

    Google Scholar 

  127. Misawa J, Kanda S, Kokue E, et al. Teratogenic activity of pyrimethamine in Gottingen minipig. Toxicol Lett 1982 Jan; 10(1): 51–4

    PubMed  CAS  Google Scholar 

  128. Tangapregassom AM, Tangapregassom MJ, Horvath C, et al. Vascular anomalies and pyrimethamine-induced malformations in the rat. Teratog Carcinog Mutagen 1985; 5(1): 55–62

    PubMed  CAS  Google Scholar 

  129. Petter C, Bourbon J. Foetal red cell macrocytosis induced by pyrimethamine; its teratogenic role. Experientia 1975 Mar 15; 31(3): 369–70

    PubMed  CAS  Google Scholar 

  130. Kudo G, Tsunematsu K, Shimoda M, et al. Effects of folic acid on pyrimethamine teratogenesis in rats. Adv Exp Med Biol 1993; 338: 469–72

    PubMed  CAS  Google Scholar 

  131. Uche-Nwachi EO. Effect of intramuscular sulfadoxinepyrimethamine on pregnant Wistar rats. Anat Rec 1998 Apr; 250(4): 426–9

    PubMed  CAS  Google Scholar 

  132. Hengst P. Teratogenicity of daraprim (pyrimethamine) in man [in German]. Zentralbl Gynakol 1972 Apr 29; 94(17): 551–5

    PubMed  CAS  Google Scholar 

  133. Greenwood BM, Greenwood AM, Snow RW, et al. The effects of malaria chemoprophylaxis given by traditional birth attendants on the course and outcome of pregnancy. Trans R Soc Trop Med Hyg 1989 Sep-Oct; 83(5): 589–94

    PubMed  CAS  Google Scholar 

  134. Morley D, Woodland M, Cuthbertson WF. Controlled trial of pyrimethamine in pregnant women in an African village. BMJ 1964 Mar 14; 5384: 667–8

    Google Scholar 

  135. Nahlen BL, Akintunde A, Alakija T, et al. Lack of efficacy of pyrimethamine prophylaxis in pregnant Nigerian women. Lancet 1989 Oct 7; 2(8667): 830–4

    PubMed  CAS  Google Scholar 

  136. Phillips-Howard PA, Wood D. The safety of antimalarial drugs in pregnancy. Drug Saf 1996 Mar; 14(3): 131–45

    PubMed  CAS  Google Scholar 

  137. Hernandez-Diaz S, Werler MM, Walker AM, et al. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 2000 Nov 30; 343(22): 1608–14

    PubMed  CAS  Google Scholar 

  138. Hernandez-Diaz S, Werler MM, Walker AM, et al. Neural tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol 2001 May 15; 153(10): 961–8

    PubMed  CAS  Google Scholar 

  139. Czeizel AE, Rockenbauer M, Sorensen HT, et al. The teratogenic risk of trimethoprim-sulfonamides: a population based case-control study. Reprod Toxicol 2001 Nov-Dec; 15(6): 637–46

    PubMed  CAS  Google Scholar 

  140. Czeizel AE, Puho E, Sorensen HT, et al. Possible association between different congenital abnormalities and use of different sulfonamides during pregnancy. Congenit Anom (Kyoto) 2004 Jun; 44(2): 79–86

    CAS  Google Scholar 

  141. Jungmann EM, Mercey D, DeRuiter A, et al. Is first trimester exposure to the combination of antiretroviral therapy and folate antagonists a risk factor for congenital abnormalities? Sex Transm Infect 2001 Dec; 77(6): 441–3

    PubMed  CAS  Google Scholar 

  142. Phillips-Howard PA, Steffen R, Kerr L, et al. Safety of mefloquine and other antimalarial agents in the first trimester of pregnancy. J Travel Med 1998 Sep; 5(3): 121–6

    PubMed  CAS  Google Scholar 

  143. Slama R, Bouyer J, Windham G, et al. Influence of paternal age on the risk of spontaneous abortion. Am J Epidemiol 2005 May 1; 161(9): 816–23 500

    PubMed  Google Scholar 

  144. Correa-Villasenor A, Cragan J, Kucik J, et al. The Metropolitan Atlanta Congenital Defects Program: 35 years of birth defects surveillance at the Centers for Disease Control and Prevention. Birth Defects Res A Clin Mol Teratol 2003 Sep; 67(9): 617–24

    PubMed  CAS  Google Scholar 

  145. Barbosa J, Ferreira I. Sulfadoxine-pyrimethamine (Fansidar) in pregnant women with toxoplasma antibody titers. In: Siegenthaler W, Luthy R, editors. The 10th International Congress of Chemotherapy, 1977. Zürich: American Society of Microbiology, 1977: 134–5

    Google Scholar 

  146. Lumley J, Watson L, Watson M, et al. Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects. Cochrane Database Syst Rev 2001 (3): CD001056

  147. WHO. Integrated management of pregnancy and childbirth: pregnancy, childbirth, postpartum and newborn care: a guide for essential practice [online]. Available from URL: http://www.who.int/reproductive-health/publications/pcpnc/pcpnc.pdf [Accessed 2007 Jan 22]

  148. Mahomed K. Iron and folate supplementation in pregnancy. Cochrane Database Syst Rev 2000; (2): CD001135

  149. Asawamahasakda W, Yuthavong Y. The methionine synthesis cycle and salvage of methyltetrahydrofolate from host red cells in the malaria parasite (Plasmodium falciparum). Parasitology 1993 Jul; 107 (Pt 1): 1–10

    PubMed  CAS  Google Scholar 

  150. Krungkrai J, Webster HK, Yuthavong Y. De novo and salvage biosynthesis of pteroylpentaglutamates in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitai 1989 Jan 1; 32(1): 25–37

    CAS  Google Scholar 

  151. Chulay JD, Watkins WM, Sixsmith DG. Synergistic antimalarial activity of pyrimethamine and sulfadoxine against Plasmodium falciparum in vitro. Am J Trop Med Hyg 1984 May; 33(3): 325–30

    PubMed  CAS  Google Scholar 

  152. Watkins WM, Sixsmith DG, Chulay JD, et al. Antagonism of sulfadoxine and pyrimethamine antimalarial activity in vitro by p-aminobenzoic acid, p-aminobenzoylglutamic acid and folic acid. Mol Biochem Parasitai 1985 Jan; 14(1): 55–61

    CAS  Google Scholar 

  153. Wang P, Brobey RK, Horii T, et al. Utilization of exogenous folate in the human malaria parasite Plasmodium falciparum and its critical role in antifolate drug synergy. Mol Microbiol 1999 Jun; 32(6): 1254–62

    PubMed  CAS  Google Scholar 

  154. van Hensbroek MB, Morris-Jones S, Meisner S, et al. Iron, but not folic acid, combined with effective antimalarial therapy promotes haematological recovery in African children after acute falciparum malaria. Trans R Soc Trop Med Hyg 1995 Nov–Dec; 89(6): 672–6

    PubMed  Google Scholar 

  155. Carter JY, Loolpapit MP, Lema OE, et al. Reduction of the efficacy of antifolate antimalarial therapy by folic acid supplementation. Am J Trop Med Hyg 2005 Jul; 73(1): 166–70

    PubMed  CAS  Google Scholar 

  156. Ouma P, Parise ME, Hamel MJ, et al. A randomized controlled trial of folate supplementation when treating malaria in pregnancy with sulfadoxine-pyrimethamine. PLoS Clin Trials 2006 Oct 20; 1(6): e28

    PubMed  Google Scholar 

  157. Mbaye A, Richardson K, Balajo B, et al. Lack of inhibition of the anti-malarial action of sulfadoxine-pyrimethamine by folic acid supplementation when used for intermittent preventive treatment in Gambian primigravidae. Am J Trop Med Hyg 2006 Jun; 74(6): 960–4

    PubMed  CAS  Google Scholar 

  158. Ip S, Chung M, Kulig J, et al. An evidence-based review of important issues concerning neonatal hyperbilirubinemia. Pediatrics 2004 Jul; 114(1): el30–53

    Google Scholar 

  159. Ostrow JD, Pascolo L, Shapiro SM, et al. New concepts in bilirubin encephalopathy. Eur J Clin Invest 2003 Nov; 3(11): 988–97

    Google Scholar 

  160. Odell GB. The dissociation of bilirubin from albumin and its clinical implications. J Pediatr 1959 Sep; 55: 268–79

    PubMed  CAS  Google Scholar 

  161. Johnson L, Garcia ML, Figueroa E, et al. Kernicterus in rats lacking glucuronyl transferase: II. Factors which alter bilirubin concentration and frequency of kernicterus. Am J Dis Child 1961 Mar; 101: 322–49

    PubMed  CAS  Google Scholar 

  162. Schutta HS, Johnson L. Clinical signs and morphologic abnormalities in Gunn rats treated with sulfadimethoxine. J Pediatr 1969 Dec; 75(6): 1070–9

    PubMed  CAS  Google Scholar 

  163. Blanc WA, Johnson L. Studies on kernicterus; relationship with sulfonamide intoxication, report on kernicterus in rats with glucuronyl transferase deficiency and review of pathogenesis. J Neuropathol Exp Neurol 1959 Jan; 18(1): 165–87; discussion 87–9

    PubMed  CAS  Google Scholar 

  164. Silverman WA, Andersen DH, Blanc WA, et al. A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. Pediatrics 1956 Oct; 18(4): 614–25

    PubMed  Google Scholar 

  165. Maisonneuve H, Faber C, Piens MA, et al. Congenital toxoplasmosis. Tolerability of the sulfadoxine-pyrimethamine combination. 24 cases [in French]. Presse Med 1984 Mar 31; 13(14): 859–62

    PubMed  CAS  Google Scholar 

  166. McLeod R, Mack D, Foss R, et al. Levels of pyrimethamine in sera and cerebrospinal and ventricular fluids from infants treated for congenital toxoplasmosis. Toxoplasmosis Study Group. Antimicrob Agents Chemother 1992 May; 36(5): 1040–8

    PubMed  CAS  Google Scholar 

  167. Guerina NG, Hsu HW, Meissner HC, et al. Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group. N Engl J Med 1994 Jun 30; 330(26): 1858–63

    PubMed  CAS  Google Scholar 

  168. Peyron F, Wallon M, Bernardoux C. Long-term follow-up of patients with congenital ocular toxoplasmosis. N Engl J Med 1996 Apr 11; 334(15): 993–4

    PubMed  CAS  Google Scholar 

  169. Villena I, Aubert D, Leroux B, et al. Pyrimethamine-sulfadoxine treatment of congenital toxoplasmosis: follow-up of 78 cases between 1980 and 1997. Reims Toxoplasmosis Group. Scand J Infect Dis 1998; 30(3): 295–300

    PubMed  CAS  Google Scholar 

  170. Wallon M, Kodjikian L, Binquet C, et al. Long-term ocular prognosis in 327 children with congenital toxoplasmosis. Pediatrics 2004 Jun; 113(6): 1567–72

    PubMed  Google Scholar 

  171. McLeod R, Boyer K, Karrison T, et al. Outcome of treatment for congenital toxoplasmosis, 1981–2004: the National Collaborative Chicago-Based, Congenital Toxoplasmosis Study. Clin Infect Dis 2006 May 15; 42(10): 1383–94

    PubMed  Google Scholar 

  172. Hohlfeld P, Daffos F, Thulliez P, et al. Fetal toxoplasmosis: outcome of pregnancy and infant follow-up after in utero treatment. J Pediatr 1989 Nov; 115 (5 Pt 1): 765–9

    PubMed  CAS  Google Scholar 

  173. Heckel GP. Chemotherapy in pregnancy. JAMA1941; 117(16): 1314–6

    Google Scholar 

  174. Ginzler AM, Cherner C. Toxic manifestations in the newborn infant following placental transmission of sulfanilamide: with a report of 2 cases simulating erythroblastosis fetalis. Am J Obstet Gynecol 1942; 44: 46–55

    CAS  Google Scholar 

  175. Dunn PM. The possible relationship between the maternal administration of sulphamethoxypyridazine and hyperbilirubinaemia in the newborn. J Obstet Gynaecol Br Commonw 1964 Feb; 71: 128–31

    PubMed  CAS  Google Scholar 

  176. Kantor HI, Sutherland DA, Leonard JT, et al. Effect on bilirubin metabolism in the newborn of sulfisoxazole administered to the mother. Obstet Gynecol 1961 Apr; 17: 494–500 501

    PubMed  CAS  Google Scholar 

  177. Morgan AD, Wenger NK. Sulfadiazine prophylaxis against rheumatic fever during pregnancy: its safety as regards the infant. J Med Assoc Ga 1965 May; 54: 153–5

    PubMed  CAS  Google Scholar 

  178. Baskin CG, Law S, Wenger NK. Sulfadiazine rheumatic fever prophylaxis during pregnancy: does it increase the risk of kernicterus in the newborn? Cardiology 1980; 65(4): 222–5

    PubMed  CAS  Google Scholar 

  179. Little PJ. The incidence of urinary infection in 5000 pregnant women. Lancet 1966 Oct 29; 2(7470): 925–8

    PubMed  CAS  Google Scholar 

  180. Bailey RR. Single-dose antibacterial treatment for bacteriuria in pregnancy. Drugs 1984 Feb; 27(2): 183–6

    PubMed  CAS  Google Scholar 

  181. Clyde DF, Press J, Shute GT. Transfer of pyrimethamine in human milk. J Trop Med Hyg 1956 Dec; 59(12): 277–84

    PubMed  CAS  Google Scholar 

  182. Kauffman RE, O’Brien C, Gilford P. Sulfisoxazole secretion into human milk. J Pediatr 1980 Nov; 97(5): 839–41

    PubMed  CAS  Google Scholar 

  183. American Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics 2001 Sep; 108(3): 776–89

    Google Scholar 

  184. Nahlen BL. Rolling back malaria in pregnancy. N Engl J Med 2000 Aug 31; 343(9): 651–2

    PubMed  CAS  Google Scholar 

  185. Guideline for the study and evaluation of gender differences in the clinical evaluation of drugs; notice. Fed Regist 1993 Jul 22; 58(139): 39406–16

  186. Merton V. The exclusion of pregnant, pregnable, and once-pregnable people (a.k.a. women) from biomedical research. Am J Law Med 1993; 19(4): 369–451

    PubMed  CAS  Google Scholar 

  187. Mastroianni AC. HIV, women, and access to clinical trials: tort liability and lessons from DES. Duke J Gend Law Policy 1998 Spring; 5(1): 167–91

    PubMed  Google Scholar 

  188. Simooya O. The WHO ‘Roll Back Malaria Project’: planning for adverse event monitoring in Africa. Drug Saf 2005; 28(4): 277–86

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest that are directly relevant to the content of this manuscript. No sources of funding were used in the preparation of this review. The findings and conclusions in this publication are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention. The authors are grateful to Dr Laurence Slutsker for helpful comments on drafts of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, P.J., Thigpen, M.C., Parise, M.E. et al. Safety and Toxicity of Sulfadoxine/Pyrimethamine. Drug-Safety 30, 481–501 (2007). https://doi.org/10.2165/00002018-200730060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200730060-00003

Keywords

Navigation