Drug Safety

, Volume 17, Issue 1, pp 8–36 | Cite as

Adverse Effects of Class I Antiarrhythmic Drugs

  • Jacques Caron
  • Christian Libersa
Review Articles Drug Experience


Class I antiarrhythmic drugs are characterised by their ability to block the fast inward sodium current in cardiac muscle tissue. However, at the same time, they can be responsible for various effects involving other organs and systems. Although some of these effects can be helpful in specific situations, most of them, such as their pro-arrhythmic propensity, are deleterious.

Some of the adverse effects of class I antiarrhythmic drugs are directly linked to sodium-channel blockade (conduction disorders, haemodynamic perturbations, and digestive and neurological effects), while others are linked to other specific pharmacological properties (e.g. atropinic, or α- or β-adrenergic blockade) or to nonspecific properties (idiosyncratic hypersensitivity, and haematological, dermatological or hepatic reactions).

Other adverse effects are associated with complex interactions between class I antiarrhythmics and individual predisposing factors, trigger mechanisms and physiological factors (including concomitant drug treatment). These numerous variations and interactions within a specific environment and underlying disorder might be of pharmacological or/and pharmacokinetic origin, making analysis of the true liability of the class I drugs very difficult when adverse effects occur.


Quinidine Antiarrhythmic Drug Disopyramide Flecainide Procainamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaughan-Williams EM. Classification of antiarrhythmic drugs. In: Sandoe E, Flensted-Jansen E, Olesen KH, editors. Proceeding of the Symposium on cardiac arrhythmias. Södertälje Astra AB, 1970: 449-72Google Scholar
  2. 2.
    Cardiac Arrhythmia Suppression Trial (CAST). Preliminary report: effect of encainide and flecainide on mortality in a randomised trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989; 321: 406–12Google Scholar
  3. 3.
    Boissel JP, Collet JP, Lievre M, et al. An effect model for the assessment of drug benefit: example of antiarrhythmic drugs in postmyocardial infarction patients. J Cardiovasc Pharmacol 1993; 22: 356–63PubMedGoogle Scholar
  4. 4.
    Ruberman W, Weinblatt E, Goldberg JD, et al. Ventricular premature beats and mortality after myocardial infarction. N Engl J Med 1977; 297: 750–7PubMedGoogle Scholar
  5. 5.
    Moss AJ, Davis HT, De Camilla J, et al. Ventricular ectopic beats and their relation to sudden and nonsudden cardiac death after myocardial infarction. Circulation 1979; 60: 998–1003PubMedGoogle Scholar
  6. 6.
    Bigger Jr JT, Fleiss JL, Kleiger R, Multicenter Post-Infarction Research Group. The relationships among ventricular arrhythmias, left ventricular dysfunction, and mortality in the 2 years after myocardial infarction. Circulation 1984; 69: 250–8PubMedGoogle Scholar
  7. 7.
    Bigger Jr JT, Weld FM, Rolnitzky LM. Prevalence, characteristics and significance of ventricular tachycardia (three or more complexes) detected with ambulatory electrocardiographic recording in the late hospital phase of acute myocardial infarction. Am J Cardiol 1981; 48: 815–23PubMedGoogle Scholar
  8. 8.
    Furberg CD. Effect of antiarrhythmic drugs on mortality after myocardial infarction. Am J Cardiol 1983; 52: 32C–6CPubMedGoogle Scholar
  9. 9.
    Roden DM. Risks and benefits of antiarrhythmic therapy. N Engl J Med 1994; 331; 785–91PubMedGoogle Scholar
  10. 10.
    Woosley RL. Antiarrhythmic agents: pharmacokinetics and pharmacodynamics. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology. Philadelphia: Saunders, 1990: 872–82Google Scholar
  11. 11.
    Colatsky TJ. The Sicilian Gambit and antiarrhythmic drug development. Cardiovasc Res 1992; 26: 562–5PubMedGoogle Scholar
  12. 12.
    Grant AO, Starmer CF, Strauss HC. Antiarrhythmic drug action: blockade of the inward sodium current. Circ Res 1984; 55: 427–39PubMedGoogle Scholar
  13. 13.
    Sadanaga I, Ogawa S, Okada Y, et al. Clinical evaluation of the use-dependent QRS prolongation and the reverse use-dependent QT prolongation of class I and class III antiarrhythmic agents and their value in predicting efficacy. Am Heart J 1993; 126: 114–21PubMedGoogle Scholar
  14. 14.
    Ranger S, Talajic M, Lemery R, et al. Amplification of flecainide-induced ventricular conduction slowing by exercise: a potentially significant clinical consequence of use-dependent sodium channel blockade. Circulation 1989; 79: 1000–6PubMedGoogle Scholar
  15. 15.
    Harrison DC, Winkle PA, Sami M, et al. Encainide: a new potent antiarrhythmic agent. Harrison DC, editor. Cardiac arrhythmias: a decade of progress. Boston: GK Hall, 1981: 315–30Google Scholar
  16. 16.
    Vaughan Williams EM. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 1984; 24: 129–47PubMedGoogle Scholar
  17. 17.
    Vaughan-Williams EM. Subgroups of class I antiarrhythmic drugs. Eur Heart J 1984; 5: 96–8PubMedGoogle Scholar
  18. 18.
    Campbell TJ. Kinetics of onset of rate-dependent effects of Class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res 1983; 17: 344–52PubMedGoogle Scholar
  19. 19.
    Harrison DC. Is there a rational basis for the modified classification of antiarrhythmic drugs. In: Morganroth J, Moore EN, editors. Cardiac arrhythmias: new therapeutic drugs and devices. Boston (MA): Nijhoff, 1985: 36–48Google Scholar
  20. 20.
    Vaughan-Williams EM. Classifying antiarrhythmic actions: by facts or speculation. J Clin Pharmacol 1992; 32: 964–77PubMedGoogle Scholar
  21. 21.
    Hondeghem LM, Snyders DJ. Class III antiarrhythmic agents have a lot of potential but a long way to go: reduced effectiveness and dangers of reverse-use dependence. Circulation 1990; 81: 686–90PubMedGoogle Scholar
  22. 22.
    Colatsly TJ, Follmer CH, Starmer CF. Channel specificity in antiarrhythmic drug action: mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation 1990; 82: 2235–42Google Scholar
  23. 23.
    Podrid J. Safety and toxicity of antiarrhythmic drugs: benefit versus risk. J Cardiovasc Pharmacol 1991; 17 Suppl. 6: 65–73Google Scholar
  24. 24.
    Ravid S, Podrid PJ, Lampert S, et al. Congestive heart failure induced by six of the newer antiarrhythmic drugs. J Am Coll Cardiol 1989; 14: 1326–30PubMedGoogle Scholar
  25. 25.
    Campbell NPS, Kelly JG, Chaturvedi NC, et al. The development of mexiletine in the management of ventricular dysrhythmias. Postgrad Med J 1977; 53 Suppl. 1: 114–9PubMedGoogle Scholar
  26. 26.
    Kostis JB, Davis D, Kluger J, et al. Cifenline in the short-term treatment of patients with ventricular premature complexes: a double-blind, placebo-controlled trial. J Cardiovasc Pharmacol 1989; 14: 88–95PubMedGoogle Scholar
  27. 27.
    Ito K, Nagafuchi K, Taga A, et al. Possible involvement of altered Nap+-Cap2+exchange in negative inotropic effects of class I antiarrhythmic drugs on rabbit and rat ventricles. J Cardiovasc Pharmacol 1996; 27: 355–61PubMedGoogle Scholar
  28. 28.
    Chapman RA, Coray A, McGuigan JAS. Sodium-calcium exchange in mammalian heart: the maintenance of low intracellular calcium concentration. In: Drake-Holland AJ, Noble MIM, editors. Cardiac metabolism. Chichester: John Wiley & Sons, 1983: 117–49Google Scholar
  29. 29.
    Kihara Y, Inoko M, Hatakeyama N, et al. Mechanisms of negative inotropic effects of class Ic antiarrhythmic agents: comparative study of the effect of flecainide and pilsicainide on intracellular calcium handling in dog ventricular myocardium. J Cardiovasc Pharmacol 1996; 27(1): 42–51PubMedGoogle Scholar
  30. 30.
    Brogden RN, Todd PA. Disopyramide: a reappraisal of its pharmacodynamic and pharmacokinetic properties and therapeutic use in cardiac arrhythmias. Drugs 1987; 34: 151–87PubMedGoogle Scholar
  31. 31.
    Stewart DE, Ikram H. The use of intravenous disopyramide for the conversion of supraventricular tachyarrhythmias. NZ Med J 1984; 97: 148–50Google Scholar
  32. 32.
    Ready CP, Benes J, Beck B. Intravenous disopyramide: safety and efficacy of a new dosage regimen. Clin Pharmacol Ther 1984; 35: 610–6Google Scholar
  33. 33.
    Meffin PJ, Roberts EW, Winkle RA, et al. The role of concentration-dependent plasma protein binding in disopyramide disposition. J Pharmacokinet Biopharm 1979; 7: 29–46PubMedGoogle Scholar
  34. 34.
    Greene AC, Iskandrian AS, Hakki AH, et al. Effects of oral disopyramide therapy on left ventricular function. Chest 1983; 83: 480–4PubMedGoogle Scholar
  35. 35.
    Kowey PR, Friedman PL, Podrid PJ, et al. Use of radionuclide ventriculography for assessment of changes in myocardial performance induced by disopyramide phosphate. Am Heart J 1982; 104: 769–4PubMedGoogle Scholar
  36. 36.
    Alboni P, Paparella N, Cappato R, et al. Direct and autonomically mediated effects of oral flecainide. Am J Cardiol 1988; 61: 759–63PubMedGoogle Scholar
  37. 37.
    Myerburg RJ, Kessler KM, Cox MM, et al. Reversal of proarrhythmic effects of flecainide acetate and encainide hydrochloride by propranolol. Circulation 1989; 80: 1571–9PubMedGoogle Scholar
  38. 38.
    Schlepper M. Cardiodepressive effects of antiarrhythmic drug. Eur Heart J 1989; 10 Suppl. E: 73–80PubMedGoogle Scholar
  39. 39.
    Ledda F, Mantelli L, Manzini S, et al. Electrophysiological and antiarrhythmic properties of propafenone in isolated cardiac preparations. J Cardiovasc Pharmacol 1981; 3: 1162–73PubMedGoogle Scholar
  40. 40.
    Brodsky MA, Allen BJ. Ventricular tachycardia in patients with impaired left ventricular function: the role of propafenone. Clin Prog Electrophysiol Pacing 1986; 4: 546–52Google Scholar
  41. 41.
    Tamargo J, Delgado C. Electrophysiological effects of propafenone on isolated guinea pig ventricular muscle and sheep Purkinje fibers. Eur J Pharmacol 1985; 118: 331–40PubMedGoogle Scholar
  42. 42.
    Millar JS, Vaughan Williams EM. Effects on rabbit nodal, atrial, ventricular and Purkinje cell potentials of a new antiarrhythmic drug, cibenzoline, which protects against action potential shortening in hypoxia. Br J Pharmacol 1982; 75: 469–78PubMedGoogle Scholar
  43. 43.
    Murakawa Y, Inoue H, Kuo T-T, et al. Prolongation of intraventricular conduction time associated with fatal impairment of defibrillation: efficiency during treatment with Class I antiarrhythmic agents. J Cardiovasc Pharmacol 1995; 25: 194–90PubMedGoogle Scholar
  44. 44.
    Tworek DA, Nazari J, Ezri M, et al. Interference of antiarrhythmic agents with function of electrical cardiac devices. Clin Pharm 1992; 11: 48–56PubMedGoogle Scholar
  45. 45.
    Hellestrand KJ, Burnett PJ, Milne JR, et al. Effect of the antiarrhythmic agent flecainide on acute and chronic pacing thresholds. Pacing Clin Electrophysiol 1983; 6: 892–9PubMedGoogle Scholar
  46. 46.
    Horowitz LN, Zipes DP, Bigger Jr JT, et al. Proarrhythmia, arrhythmogenesis or aggravation of arrhythmia: a status report. Am J Cardiol 1987; 59 Suppl.: 54E–6EPubMedGoogle Scholar
  47. 47.
    Caron J, Libersa C, Guedon-Moreau L, et al. Des effets antiarythmiques aux effets proarythmiques. Therapie 1992; 47: 359–61PubMedGoogle Scholar
  48. 48.
    Levine JH, Morganroth J, Kadish AH. Mechanisms and risk factors for proarrhythmia with type Ia compared with Ic antiarrhythmic drug therapy. Circulation 1989; 80: 1063–9PubMedGoogle Scholar
  49. 49.
    Ikeda N, Singh BN, Davis LO, et al. Effect of flecainide on the electrophysiologic properties of isolated canine and rabbit myocardial fibers. J Am Coll Cardiol 1985; 5: 303–10PubMedGoogle Scholar
  50. 50.
    Dessertenne F. La tachycardie ventriculaire à deux foyers opposés variables. Arch Mal Coeur 1966; 59: 263–72PubMedGoogle Scholar
  51. 51.
    Jackman WM, Friday KJ, Anderson JL, et al. The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis 1988; 31: 115–72PubMedGoogle Scholar
  52. 52.
    Antzelevitch C, Jorge M, Davidenko JM. Quinidine-induced early after depolarizations and triggered activity. J Electrophysiol 1989; 3(5): 323–8Google Scholar
  53. 53.
    Fautrez VM, Adamantidis MM, Caron J, et al. Comparative electrophysiological effects of metabolites of quinidine and hydroquinidine. J Cardiovasc Pharmacol 1992; 19: 308–18PubMedGoogle Scholar
  54. 54.
    Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers: relationship to potassium and cycle length. Circ Res 1985; 56: 857–67PubMedGoogle Scholar
  55. 55.
    Davy JM, Weissenburger J, Chezalviel F, et al. Experimental arrhythmogenicity of quinidine: effects of dose and route of administration. J Electrophysiol 1989; 3(5): 339–45Google Scholar
  56. 56.
    El Sherif N, Zeiller RH, Craelius W, et al. QTU prolongation and polymorphic ventricular tachyarrhythmias due to brady-cardia-dependent early afterdepolarizations: after depolarizations and ventricular arrhythmias. Circ Res 1988; 63: 286–305PubMedGoogle Scholar
  57. 57.
    Fautrez VM, Adamantidis MM, Guillaume MC, et al. Comparative electrophysiologic effects of hydroquinidine and quinidine in guinea-pig papillary muscle: frequency and voltage dependence. J Electrophysiol 1989; 3: 353–61Google Scholar
  58. 58.
    Surawicz B. Electrophysiologic substrate of torsades de pointes: dispersion of repolarization or early afterdepolarizations? J Am Coll Cardiol 1989; 14: 172–84PubMedGoogle Scholar
  59. 59.
    Roden DM, Woosley RL. QT prolongation and arrhythmia suppression. Am Heart J 1985; 109: 411–5PubMedGoogle Scholar
  60. 60.
    Roden DM, Woosley RL, Primm RK. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am Heart J 1986; 111: 1088–93PubMedGoogle Scholar
  61. 61.
    Oberg KC, O’Toole MF, Gallastegui JL, et al. ‘Late’ proarrhythmia due to quinidine. Am J Cardiol 1994; 74: 192–4PubMedGoogle Scholar
  62. 62.
    Kimura Y, Takayanagi K, Sakai Y, et al. Torsades de pointes in paced patients with sick sinus syndrome after disopyramide administration. Jpn Heart J 1994; 35: 153–61PubMedGoogle Scholar
  63. 63.
    Krikler DM, Curry PVL. Torsades de pointes, an atypical ventricular tachycardia. Br Heart J 1976; 38: 117–20PubMedGoogle Scholar
  64. 64.
    Cocco G, Strozzi C, Ghu D, et al. Torsades de pointes as a manifestation of mexiletine toxicity. Am Heart J 1980; 100: 878–0PubMedGoogle Scholar
  65. 65.
    Crijns HJ, Kingma JH, Viersma JW, et al. Transient giant inverted T waves during flecainide intoxication. Am Heart J 1987; 113: 214–5PubMedGoogle Scholar
  66. 66.
    Said SAM, Somera ST, Oude Luttikhuis HA. Flecainide-in-duced QT prolongation, T wave inversion and ventricular tachycardia during treatment for symptomatic atrial fibrillation. Int J Cardiol 1994; 44: 285–7PubMedGoogle Scholar
  67. 67.
    Wickers F, Haissaguère M, Palussière J. Allongement de QT et induction de torsades de pointe par le flécaïnide: a propos d’un cas. Arch Mal Coeur 1988; 81: 1283–5PubMedGoogle Scholar
  68. 68.
    Roden DM. The long QT syndrome and torsades de pointes: basic and clinical aspects. In: El-Sherif N, Samet P, editors. Cardiac pacing and electrophysiology. 3rd ed. Philadelphia: W.B. Saunders, 1991: 265–84Google Scholar
  69. 69.
    Damiano BP, Rosen M. Effects of pacing on triggered activity induced by early afterdepolarizations. Circulation 1984; 69: 1013–25PubMedGoogle Scholar
  70. 70.
    Botting JH, Curtis MJ, Walker MJ. Arrhythmias associated with myocardial ischemia and infarction. Mol Aspects Med 1985; 8: 307–422PubMedGoogle Scholar
  71. 71.
    Roberts R, Ambos HD, Loof CW, et al. Initiation of repetitive ventricular depolarization by relatively late premature complexes in patients with acute myocardial infarction. Am J Cardiol 1978; 41: 678–83PubMedGoogle Scholar
  72. 72.
    Tye KH, Samant A, Desser KB, et al. R on T or R on P phenomenon? Relation to the genesis of ventricular tachycardia. Am J Cardiol 1979; 44: 632–7PubMedGoogle Scholar
  73. 73.
    Gillis AM, Kates RE. Influence of protein binding on the cardiac uptake and pharmacodynamics of propafenone. Cardiovasc Research 1988; 12: 526–34Google Scholar
  74. 74.
    Aupetit JF, Timour Q, Loufoua-Moundanga J, et al. Profibrillatory effects of lidocaine in the acutely ischemic porcine heart. J Cardiovasc Pharmacol 1995; 25(5): 810–6PubMedGoogle Scholar
  75. 75.
    Pacini DJ, Boachie-Ansah G, Kane KA. Modification by hypoxia, hyperkalaemia and acidosis of the cardiac electrophysiological effects of a range of antiarrhythmic drugs. Br J Pharmacol 1992; 107: 665–70PubMedGoogle Scholar
  76. 76.
    Nelson SD, Coyne KS, Meimer J. The discordant influences of infarct healing on the electrophysiologic effects of procainamide and N-acetylprocainamide. J Pharmacol Exp Ther 1995; 273(1): 315–9PubMedGoogle Scholar
  77. 77.
    Haverkamp W, Hindricks G, Fechtrup C, et al. Sodium channel blockers in the treatment of ventricular arrhythmias: different effects in the normal, ischaemic or failing heart? Eur Heart J 1991; 12 Suppl. F: 10–7PubMedGoogle Scholar
  78. 78.
    Fagbemi SO, Chi L, Lucchesi BR. Antifibrillatory and profibrillatory actions of selected class I antiarrhythmic agents. J Cardiovasc Pharmacol 1993; 21: 709–19PubMedGoogle Scholar
  79. 79.
    Akhtar M, Breithardt G, Camm AJ, Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. CAST and beyond: implications of the cardiac arrhythmia suppression trial. Circulation 1990; 81(3): 1123–7PubMedGoogle Scholar
  80. 80.
    Timour Q, Aupetit JF, Loufoua-Moundanga J, et al. Role of asynchronous activation of the ventricular fibres by an ectopic pacemaker in the accidents, especially fibrillation, caused by Ic antiarrhythmic drugs. Fundam Clin Pharmacol 1992; 6: 159–67PubMedGoogle Scholar
  81. 81.
    Pogwizd SM, Corr PB. Biochemical and electrophysiological alterations underlying ventricular arrhythmias in the failing heart. Eur Heart J 1994; 15 Suppl. D: 145–54PubMedGoogle Scholar
  82. 82.
    Beuckelmann DJ, Nabauer M, Ardmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992; 85: 1046–55PubMedGoogle Scholar
  83. 83.
    Aronson RS, Mina Z. Cellular mechanisms of arrhythmias in hypertrophied and failing myocardium. Circulation 1993; 87 Suppl. VII: 76–83Google Scholar
  84. 84.
    Gamier D. Attachment procedure of mechanism manipulation of isolated cardiac myocytes: a challenge to cardiovascular research. Cardiovasc Res 1994; 28: 1558–64Google Scholar
  85. 85.
    Kottkcamp M, Budde B, Lamp W, et al. Clinical significance and management of ventricular arrhythmias in heart failure. Eur Heart J 1994; 15 Suppl. D: 155–63Google Scholar
  86. 86.
    Zipes DP. Proarrhythmic effects of antiarrhythmic drugs. Am J Cardiol 1987; 59: 26E–31EPubMedGoogle Scholar
  87. 87.
    Bigger Jr JT, Sanar DI. Clinical types of proarrhythmic response to antiarrhythmic drugs. Am J Cardiol 1987; 59: 2E–9EPubMedGoogle Scholar
  88. 88.
    Akiyama T, Pawitan Y, Campbell WB, et al. Effects of advancing age on the efficacy and side effects of antiarrhythmic drugs in post-myocardial infarction patients with ventricular arrhythmias. J Am Geriatr Soc 1992; 40: 666–72PubMedGoogle Scholar
  89. 89.
    Nestico PF, Morganroth J. Cardiac arrhythmias in the elderly: antiarrhythmic drug treatment. Cardiol Clin 1986; 4: 285–303PubMedGoogle Scholar
  90. 90.
    Hayakawa H, Ino T. Antiarrhythmic therapy in the elderly. Jpn J Geriatr 1994; 31: 1192–7Google Scholar
  91. 91.
    Pfeifer HJ, Greenblatt DJ, Koch Wiser J. Clinical use and toxicity of intravenous lidocaine. Am Heart J 1976; 92: 168–73PubMedGoogle Scholar
  92. 92.
    Podrid PJ, Levine PA, Klein MP. Effect of age on antiarrhythmic drug efficacy and toxicity. Am J Cardiol 1989; 63: 735–9PubMedGoogle Scholar
  93. 93.
    Yang T, Roden DM. Extracellular potassium modulation of drug block of Ibkr: implications for torsades de pointes and reverse use-dependence. Circulation 1996; 93: 407–11PubMedGoogle Scholar
  94. 94.
    Pratt CM, Eaton T, Francis M, et al. The inverse relationship between baseline left ventricular ejection fraction and outcome of antiarrhythmic therapy: a dangerous imbalance in the risk-benefit ratio. Am Heart J 1989; 118: 433–40PubMedGoogle Scholar
  95. 95.
    Podrid PJ, Lampert S, Graboys TB, et al. Aggravation of arrhythmia by antiarrhythmic drugs: incidence and predictors. Am J Cardiol 1987; 59 Suppl.: 38E–44EPubMedGoogle Scholar
  96. 96.
    Winkle RA, Mason JW, Griffin JC. Malignant ventricular tachycardia associated with the use of encainide. Am Heart J 1981; 102: 857–64PubMedGoogle Scholar
  97. 97.
    Benditt DG. Proarrhythmia: recognition of patients at risk. J Cardiovasc Electrophysiol 1991 Suppl.: S221-32Google Scholar
  98. 98.
    Slater W, Lampert S, Podrid PJ, et al. Clinical predictors of arrhythmia worsening by antiarrhythmic drugs. Am J Cardiol 1988; 61: 349–53PubMedGoogle Scholar
  99. 99.
    Soyka LF. Safety of encainide for the treatment of ventricular arrhythmias. Am J Card 1986; 58: 96C–103CPubMedGoogle Scholar
  100. 100.
    Soyka L, Overfield S, Verjee S. Risk factors for death and proarrhythmia in antiarrhythmia drug trials [abstract]. Acta Pharmacol Toxicol 1986; 59 Suppl. 5: 41Google Scholar
  101. 101.
    Josephson R, Papa L, Brooks M, CAST Investigators. Effect of age on postmyocardial infarction ventricular arrhythmias (Holter registry data from CAST I and CAST 11). Am J Cardiol 1995; 76: 710–3PubMedGoogle Scholar
  102. 102.
    Duff HJ, Roden D, Primm RK et al. Mexiletine in the treatment of resistant ventricular arrhythmias: enhancement of efficacy and reduction of dose-related side effects by combination with quinidine. Circulation 1983; 67: 1124–28PubMedGoogle Scholar
  103. 103.
    Rae AP, Kay HR, Horowitz LN, et al. Proarrhythmic effects of antiarrhythmic drugs in patients with malignant ventricular arrhythmias evaluated by electrophysiologic testing. J Am Coll Cardiol 1988; 12: 131–9PubMedGoogle Scholar
  104. 104.
    Libersa C, Caron J, Guedon-Moreau L, et al. Adverse cardiovascular effects of antiarrhythmic drugs. Part I: proarrhythmic effects. Therapie 1992; 47: 193–8PubMedGoogle Scholar
  105. 105.
    Morganroth J, Horowitz L. Flecainide: its pro-arrhythmic effect and expected changes on the surface electrocardiogram. Am J Cardiol 1984; 53: 89B–94BPubMedGoogle Scholar
  106. 106.
    Velebit U, Podrid P, Lown B, et al. Aggravation and provocation of ventricular arrhythmias by antiarrhythmic drugs. Circulation 1982; 65: 886–94PubMedGoogle Scholar
  107. 107.
    Anastasiou-Nana MI, Menlove RL, Nanas JN, et al. Changes in spontaneous variability of ventricular ectopic activity as a function of time in patients with chronic arrhythmias. Circulation 1988; 78: 286–95PubMedGoogle Scholar
  108. 108.
    Pratt CM, Slymen DJ, Wierman AM, et al. The changing baseline of complex ventricular arrhythmias: a new consideration in assessing long-term antiarrhythmic drug therapy. N Engl J Med 1985; 313: 1444–9PubMedGoogle Scholar
  109. 109.
    Schmidt G, Ulm K, Barthel P, et al. Spontaneous variability of simple and complex ventricular premature contractions during long time intervals in patients with severe organic heart disease. Circulation 1988; 78: 296–301PubMedGoogle Scholar
  110. 110.
    Wyse DG, Morganroth J, Lendingham R, et al. New insights into the definition and meaning of proarrhythmia during initiation of antiarrhythmic drug therapy from the Cardiac Arrhythmia Suppression Trial and its pilot study. J Am Coll Cardiol 1994; 23: 1130–40PubMedGoogle Scholar
  111. 111.
    Coplen SE, Antman EM, Berlin JA, et al. Efficacy and safety of quinidine therapy for maintenance of sinus rhythm after cardioversion. Circulation 1990; 82: 1106–6PubMedGoogle Scholar
  112. 112.
    Libersa C, Caron J, Guedon-Moreau L, et al. Effets proarythmiques des antiarythmiques: méthodes d’étude et difficultés d’analyse. Therapie 1992; 47: 363–5PubMedGoogle Scholar
  113. 113.
    Boden WE. Meta-analysis in clinical trials reporting: has a tool become a weapon? Am J Cardiol 1992; 69: 681–6PubMedGoogle Scholar
  114. 114.
    Crijns HJ, Van Gelder IS, Be KI. Supraventricular tachycardia mimicking ventricular tachycardia during flecainide treatment. Am J Cardiol 1988; 62: 1303–6PubMedGoogle Scholar
  115. 115.
    Warrington SJ, Hamer J. Some cardiovascular problems with disopyramide. Postgrad Med J 1980; 56: 229–33PubMedGoogle Scholar
  116. 116.
    Podrid PJ. Aggravation of arrhythmia: a complication of antiarrhythmic drugs. J Cardiovasc Electrophysiol 1993; 4: 311–9PubMedGoogle Scholar
  117. 117.
    Ravid S, Podrid PJ, Novrit B. Safety of long-term propafenone therapy for cardiac arrhythmia: experience with 774 patients. J Electrophysiol 1987; 1: 580–90Google Scholar
  118. 118.
    Poole JE, Werner JA, Bardy GH, et al. Intolerance and ineffectiveness of mexiletine in patients with serious ventricular arrhythmias. Am Heart J 1986; 112: 322–6PubMedGoogle Scholar
  119. 119.
    Adler JB, Goldberg RI. Mexiletine-induced pill esophagitis. Am J Gastroenterology 1990; 85: 629–30Google Scholar
  120. 120.
    Bigger Jr JT, Heissenbuttel RH. The use of procaine amide and lidocaine in the treatment of cardiac arrhythmias. Prog Cardiovasc Dis 1969; 11: 515–34PubMedGoogle Scholar
  121. 121.
    Peterson AM, Conrad SD, Bell JM. Procainamide-induced pseudoobstruction in a diabetic patient. Drug Intell Clin Pharm 1991; 25: 1334–5Google Scholar
  122. 122.
    Connolly SJ, Kates RE, Lebsack CS, et al. Clinical pharmacology of propafenone. Circulation 1983; 68: 589–96PubMedGoogle Scholar
  123. 123.
    Furlanello F, Disertori M, Veragara G, et al. Clinical evaluation of new antiarrhythmic agents: experiences with propafenone. Int J Clin Pharmacol Res 1983; 3: 101–5PubMedGoogle Scholar
  124. 124.
    Rosketh R, Storstein O. Quinidine therapy of chronic auricular fibrillation. Arch Intern Med 1963; 111: 184Google Scholar
  125. 125.
    Zahger D, Gilon D, Gotsman MS. Delayed quinidine-induced diarrhoea after five years of treatment [letter]. Chest 1992; 101: 296PubMedGoogle Scholar
  126. 126.
    Klein RC, Horwitz LD, Rushforth N. Efficacy and safety of oral cibenzoline for ventricular arrhythmias. Am J Cardiol 1986; 57: 592–7PubMedGoogle Scholar
  127. 127.
    Coumel P, Le Clercq J-F, Assayag P. European experience with the antiarrhythmic efficacy of propafenone for supraventricular and ventricular arrhythmias. Am J Cardiol 1984; 54: 60D–6DPubMedGoogle Scholar
  128. 128.
    Zipes DP, Troup PJ. New anti-arrhythmic agents: amiodarone, aprindine, disopyramide, ethmozin, mexiletine, tocainide, verapamil. Am J Cardiol 1978; 41: 1005–24PubMedGoogle Scholar
  129. 129.
    Horn HR, Hadidian Z, Johnson JL, et al. Safety evaluation of tocainide in the American Emergency Use Program. Am Heart J 1980; 100: 1037–40PubMedGoogle Scholar
  130. 130.
    Jeandel C, Bannwarth B, Trechot P, et al. Myoclonic encephalopathy associated with propafenone. Therapie 1990; 45: 161–2PubMedGoogle Scholar
  131. 131.
    Chua TP, Farrell T, Lipkin DP. Myoclonus associated with propafenone [letter]. BMJ 1994; 308: 113–8PubMedGoogle Scholar
  132. 132.
    Lecky BRF, Weir D, Chong E. Exacerbation of myasthenia by propafenone [letter]. J Neurol Neurosurg Psychiatry 1991; 54: 377PubMedGoogle Scholar
  133. 133.
    Miller CD, Oleshansky MA, Gibson KF, et al. Procainamideinduced myasthenia-like weakness and dysphagia [letter]. Ther Drug Monit 1993; 15: 251–4PubMedGoogle Scholar
  134. 134.
    Sayler DJ, Dejong DJ. Possible procainamide-induced myopathy [letter]. Drug Intell Clin Pharmacy 1991; 25: 436Google Scholar
  135. 135.
    Chew CYC, Collett J, Singh BN. Mexiletine: a review of its pharmacological properties and therapeutic efficacy in arrhythmias. Drugs 1979; 17: 161–81PubMedGoogle Scholar
  136. 136.
    Gentzkow GD, Sullivan JY. Extracardiac adverse effects of flecainide. Am J Cardiol 1984; 53 Suppl.: 101B–5BPubMedGoogle Scholar
  137. 137.
    Cocco G, Strozzi C, Pansini R, et al. Antiarrhythmic use of cibenzoline, a new class I antiarrhythmic agent with class 3 and 4 properties, in patients with recurrent ventricular tachycardia. Eur Heart J 1984; 5: 108–14PubMedGoogle Scholar
  138. 138.
    Palace J, Shah R, Clough C. Flecainide-induced peripheral neuropathy [letter]. BMJ 1992; 305: 810PubMedGoogle Scholar
  139. 139.
    Miller LG, Jankovic J. Persistent dystonia possibly induced by flecainide. Mov Disord 1992; 7: 62–3PubMedGoogle Scholar
  140. 140.
    Schwartz AB, Klausner SC, Yee S, et al. Cerebellar ataxia due to procainamide toxicity. Arch Intern Med 1984; 144: 2260–1PubMedGoogle Scholar
  141. 141.
    Currie P, Ramsdale DR. Paranoid psychosis induced by tocainide. BMJ 1984; 288: 606–7PubMedGoogle Scholar
  142. 142.
    Clarke CWF, El-Mahdi EO. Confusion and paranoia associated with oral tocainide. Postgrad Med J 1985; 61: 79–81PubMedGoogle Scholar
  143. 143.
    Ziegelbaum M, Lever H. Acute urinary retention associated with flecainide. Cleveland Clin J Med 1990; 57: 86–7Google Scholar
  144. 144.
    Miura DS, Keren G, Torres V, et al. Antiarrhythmic effects of cibenzoline. Am Heart J 1985; 109: 827–33PubMedGoogle Scholar
  145. 145.
    Browne KF, Prystowsky EN, Zipes DP, et al. Clinical efficacy and electrophysiologic effects of cibenzoline therapy in patients with ventricular arrhythmias. J Am Coll Cardiol 1984; 3: 857–64PubMedGoogle Scholar
  146. 146.
    Teichman SL, Fisher JD, Matos JA, et al. Disopyramide-pyrido-stigmine: report of a beneficial drug interaction. J Cardiovasc Pharmacol 1985; 7: 108–13PubMedGoogle Scholar
  147. 147.
    Prendergast MD, Nasca TJ. Anticholinergic syndrome with procainamide toxicity [letter]. JAMA 1984; 251: 2926–7PubMedGoogle Scholar
  148. 148.
    Morganroth J. Safety and efficacy of a twice-daily dosing regimen for moricizine (ethmozine). Am Heart J 1985; 110: 1188–92PubMedGoogle Scholar
  149. 149.
    Ilett KF, Tjokroseto RR, Benzie JL. Correlation of disopyramide and N-desalkyl disopyramide plasma levels with anticholinergic side effects. Aust J Hosp Pharm 1983; 13: 142Google Scholar
  150. 150.
    Josephson ME, Seides SF, Batsford WP, et al. The electrophysiological effects of intramuscular quinidine on the atrioventricular conducting system in man. Am Heart J 1974; 87: 55–64PubMedGoogle Scholar
  151. 151.
    Feld GK, Chen PS, Nicod P, et al. Possible atrial proarrhythmic effects of class 1C antiarrhythmic drugs. Am J Cardiol 1990; 66: 378–83PubMedGoogle Scholar
  152. 152.
    Marcus FI. The hazard of using type 1 C antiarrhythmic drugs in the treatment of paroxysmal atrial fibrillation. Am J Cardiol 1990; 66: 366–7PubMedGoogle Scholar
  153. 153.
    Bender F. Benefit-risk ratio in the treatment of tachyarrhythmias: a clinical judgement. Drugs 1985; 29 Suppl. 4: 65–7PubMedGoogle Scholar
  154. 154.
    Podrid PJ, Morganroth J. Aggravation of arrhythmia during drug therapy: experience with flecainide acetate. Pract Cardiol 1985; 11: 55–70Google Scholar
  155. 155.
    Nelson LD, Schmid PG, Holmsten D, et al. Effects of quinidine on venous responses to adrenergic and nonadrenergic constrictor stimuli: indirect evidence of two sites of action in vascular smooth muscle. Proc Soc Exp Biol Med 1974; 146: 409–13PubMedGoogle Scholar
  156. 156.
    Lee IT, Kroemer HK, Silberstein DI, et al. The role of genetically determined polymorphic drug metabolism in the beta-blockade produced by propafenone. N Engl J Med 1990; 322: 1764–8PubMedGoogle Scholar
  157. 157.
    Veale D, McComb JM, Gibson GJ. Propafenone [letter]. Lancet 1990; 335: 979PubMedGoogle Scholar
  158. 158.
    Hidenan S, Koichi O, Yasuhiro W. Antiarrhythmic drugs, clofilium and cibenzoline are potent inhibitors of glibenclamide-sensitive Kp+ currents in Xenopus oocytes. Br J Pharmacol 1993; 109: 866–72Google Scholar
  159. 159.
    Cacoub P, Deray G, Baumelou A, et al. Disopyramide-induced hypoglycemia: case report and review of the literature. Fund Clin Pharmacol 1989; 3: 527–35Google Scholar
  160. 160.
    Lefort G, Haissaguerre M, Fioro J, et al. Hypoglycémies au cours de surdosages par un nouvel antiarythmique: la cibenzoline; trois observations. Presse Méd 1988; 17: 687–91PubMedGoogle Scholar
  161. 161.
    Houdent C, Noblet C, Vandoren C, et al. Cibenzoline-induced hypoglycemia in the elderly. Rev Med Int 1991; 12: 143–5Google Scholar
  162. 162.
    Montagnac R, Schillinger F. Cibenzoline-induced hypoglycemia in renal failure patients. Sem Hopitaux 1995; 71: 345–7Google Scholar
  163. 163.
    Gross A, Guerci B, Grulet H, et al. Hypoglycaemia induced by cibenzoline [letter]. Diabete Metab 1990; 16: 44Google Scholar
  164. 164.
    Ishida-Takahashi A, Horie M, Tsuura Y, et al. Block of pancreatic ATP-sensitive Kp+ channels and insulinotrophic action by the antiarrhythmic agent, cibenzoline. Br J Pharmacol 1996; 111: 1749–55Google Scholar
  165. 165.
    Sato T, Shigematsu S, Arita M. Mexiletine-induced shortening of the action potential duration of ventricular muscles by activation of ATP-sensitive Kp+ channels. Br J Pharmacol 1995; 115: 381–2PubMedGoogle Scholar
  166. 166.
    Aviado DM, Salem H. Drug action and interaction 1. Quinidine for cardiac arrhythmias. J Clin Pharmacol 1975; 15: 477–85PubMedGoogle Scholar
  167. 167.
    Selzer A, Wray HW. Quinidine syncope: paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation 1964; 30: 17–26PubMedGoogle Scholar
  168. 168.
    Daoud EG, Niebauer MJ, Man KC, et al. Prospective assessment of quinidine induced QT prolongation and proarrhythmia in hospitalised patients [abstract]. J Am Coll Cardiol 1995 (special issue): 220Google Scholar
  169. 169.
    Amlie JP, Storstein L, Olsson B, et al. Absolute bioavailability of quinidine in two sustained release preparations. Eur J Clin Pharmacol 1979; 16: 45–8PubMedGoogle Scholar
  170. 170.
    Cohen IS, Jick H, Cohen SI. Adverse reactions to quinidine in hospitalized patients. Prog Cardiovasc Dis 1977; 20: 151–63PubMedGoogle Scholar
  171. 171.
    Shaftel N, Halpern A. The quinidine problem. Angiology 1958; 9: 34–46PubMedGoogle Scholar
  172. 172.
    Almeyda J, Levantine A. Cutaneous reactions to cardiovascular drugs. Br J Dermatol 1973; 88: 313–9PubMedGoogle Scholar
  173. 173.
    Taylor DR, Potashnick R. Quinidine-induced exfoliative dermatitis, with brief review of quinidine idiosyncrasies. JAMA 1951; 145: 641–2Google Scholar
  174. 174.
    Gouffault J, Pawlotsky Y, Morel H, et al. Erythrodermie d’origine quinidinique. Sem Hôp Paris 1965; 41: 1350–3PubMedGoogle Scholar
  175. 175.
    Pariser DM, Taylor JR. Quinidine photosensitivity. Arch Dermatol 1975; 111: 1440–3PubMedGoogle Scholar
  176. 176.
    Lang PG. Quinidine-induced Photodermatitis confirmed by photopatch testing. J Am Acad Dermatol 1983; 9: 124–8PubMedGoogle Scholar
  177. 177.
    Bruce S, Wolf JE. Quinidine-induced photosensitive livedo reticularis-like eruption. J Am Acad Dermatol 1985; 12: 332–6PubMedGoogle Scholar
  178. 178.
    Mahler R, Sissons W, Watters K. Pigmentation induced by quinidine therapy. Arch Dermatol 1986; 122: 1062–4PubMedGoogle Scholar
  179. 179.
    Lou CP, Wong KL, Leung WH. Acute lymphadenopathie complicating quinidine therapy. Postgrad Med J 1990; 66: 406–7Google Scholar
  180. 180.
    Bolton FG. Thrombocytopenic purpura due to quinidine: serologic mechanisms. Blood 1956; 2: 547–64Google Scholar
  181. 181.
    Shulman NR. Immunologic reactions to drugs. N Engl J Med 1972; 287: 408–9PubMedGoogle Scholar
  182. 182.
    Lerner W, Caruso R, Faig D, et al. Drug-dependent and non-drug-dependent antiplatelet antibody in drug-induced immunologie thrombocytopenic purpura. Blood 1985; 66: 306–11PubMedGoogle Scholar
  183. 183.
    Stricker RB, Shuman MA. Quinidine purpura: evidence that glycoprotein V is a target platelet antigen. Blood 1986; 67: 1377–81PubMedGoogle Scholar
  184. 184.
    Ray JB, Brereton WF, Nullet FR. Intravenous immune globulin for the treatment of presumed quinidine-induced thrombocytopenia. Drug Intell Clin Pharm 1990; 24: 693–5Google Scholar
  185. 185.
    Kaufman DW, Kelly JP, Johannes CB, et al. Acute thrombocytopenic purpura in relation to the use of drugs. Blood 1993; 82: 2714–8PubMedGoogle Scholar
  186. 186.
    Nieminen U, Kekomaki R. Quinidine-induced thrombocytopenic purpura: clinical presentation in relation to drug-dependent and drug independent platelet antibodies. Br J Haematol 1992; 80: 77–82PubMedGoogle Scholar
  187. 187.
    Sureda A, Hernandez Madrid A, Pérez Vaquero, et al. Quinidine-induced agranulocytosis of abrupt onset. Acta Haematologica 1990; 84(I): 43–4PubMedGoogle Scholar
  188. 188.
    Barzel US. Quinidine sulfate induced hypoplastic anemia and agranulocytosis. JAMA 1967; 201: 325–7PubMedGoogle Scholar
  189. 189.
    Castro O, Nash I. Quinidine leukopenia and thrombocytopenia with a drug-dependent leukoagglutinin [letter]. N Engl J Med 1977; 296: 572PubMedGoogle Scholar
  190. 190.
    Eisner EV, Carr RM, MacKinney AR. Quinidine-induced agranulocytosis. JAMA 1977; 238: 884–6PubMedGoogle Scholar
  191. 191.
    Geltner D, Chajek T, Rubinger D, et al. Quinidine hypersensitivity and liver involvement. Gastroenterology 1976; 70: 650–2PubMedGoogle Scholar
  192. 192.
    Guharoy SR, Shahin J, Levin S. Quinidine-induced hepatotoxicity revisited. Vet Hum Toxicol 1991; 33: 613–4PubMedGoogle Scholar
  193. 193.
    Bramlet DA, Posalaky Z, Olson R. Granulomatous hepatitis as manifestation of quinidine hypersensitivity. Arch Intern Med 1980; 140: 395–7PubMedGoogle Scholar
  194. 194.
    Knobler H, Levij IS, Gavish D, et al. Quinidine-induced hepatitis: a common and reversible hypersensitivity reaction. Arch Intern Med 1986; 146: 526–8PubMedGoogle Scholar
  195. 195.
    West SG, McMahon M, Portanova JP. Quinidine-induced lupus erythematosus. Am Intern Med 1984; 100: 840–2Google Scholar
  196. 196.
    Amadio P, Cummings DM, Dashow L. Procainamide, quinidine, and lupus erythematosus [letter]. Ann Intern Med 1985; 102: 419PubMedGoogle Scholar
  197. 197.
    Lavie CJ, Biundo J, Quinet RJ, et al. Systemic lupus erythematosus (SLE) induced by quinidine. Arch Intern Med 1985; 145: 446–8PubMedGoogle Scholar
  198. 198.
    McCormack GD, Barth WF. Quinidine induced lupus syndrome. Proc Semin Arthritis Rheum 1985; 15: 73–9Google Scholar
  199. 199.
    Cohen MG, Kevat S, Prowse MV, et al. Two distinct quinidineinduced rheumatic syndromes. Am Intern Med 1988; 108: 369–71Google Scholar
  200. 200.
    Zaidman GW. Quinidine Keratopathie. Am J Ophthalmol 1984; 97: 247–9PubMedGoogle Scholar
  201. 201.
    Hustead JD. Granulomatous uveitus and quinidine hypersensitivity. Am J Ophthalmol 1991; 112: 461–2PubMedGoogle Scholar
  202. 202.
    Poukkula A, Pääköe P. Quinidine-induced reversible pneumonitis. Chest 1994; 106: 304–6PubMedGoogle Scholar
  203. 203.
    McCord GS, Clouse RE. Pill induced oesophageal strictures: clinical features and risk factors for development. Am J Med 1990; 88: 512–8PubMedGoogle Scholar
  204. 204.
    Bohane TD, Perrault J, Fowler RS. Oesophagitis and oesophageal obstruction from quinidine tablets in association with left atrial enlargement: a case report. Aust Paediatr J 1978; 4: 191–2Google Scholar
  205. 205.
    Giacomini KM, Cox BM, Blaschke TF. Comparative anticholinergic potencies of R- and S-disopyramide in longitudinal muscle strips from guinea pig ileum. Life Sci 1980; 27: 1191–7PubMedGoogle Scholar
  206. 206.
    Doody PT. Disopyramide hepatotoxicity and disseminated intravascular coagulation. South Med J 1982; 75: 496–8PubMedGoogle Scholar
  207. 207.
    Meinertz T, Langer KH, Kasper W, et al. Disopyramide-induced intrahepatic cholestasis [letter]. Lancet 1977; 2: 828PubMedGoogle Scholar
  208. 208.
    Riccioni N, Bozzi L, Susini N. Disopyramide-induced intrahepatic cholestasis [letter]. Lancet 1977; 2: 1362PubMedGoogle Scholar
  209. 209.
    Craxi A, Gatto G, Maringhini A, et al. Disopyramide and cholestasis. Ann Intern Med 1980; 93: 150–1PubMedGoogle Scholar
  210. 210.
    Edmonds ME, Hayler AM. A case of intra-hepatic cholestasis after disopyramide therapy [letter]. Eur J Clin Pharmacol 1980; 18: 285–6PubMedGoogle Scholar
  211. 211.
    Bakris GL, Cross PD, Hammarsten JE. Disopyramide-associated liver dysfunction. Mayo Clin Proc 1983; 58: 265–7PubMedGoogle Scholar
  212. 212.
    Conrad ME, Cumbie WG, Thrasher DR, et al. Agranulocytosis associated with disopyramide therapy [letter]. JAMA 1978; 240: 1857–8PubMedGoogle Scholar
  213. 213.
    Porterfield JG, Antman EM, Lown B. Respiratory difficulty after use of disopyramide [letter]. N Engl J Med 1980; 303: 584PubMedGoogle Scholar
  214. 214.
    Handa SP. Disopyramide-induced toxic cutaneous blisters and coagulopathy. Dialysis Transplant. 1982; II: 706–7Google Scholar
  215. 215.
    Falk RH, Nisbet PA, Gray TJ. Mental distress in patient on disopyramide [letter]. Lancet 1977; I: 858–9Google Scholar
  216. 216.
    Padfield PL, Smith DA, Fitzsimons EJ, et al. Disopyramide and acute psychosis [letter]. Lancet 1977; I: 1152Google Scholar
  217. 217.
    Dawkins KD, Gibson J. Peripheral neuropathy with disopyramide [letter]. Lancet, 1978; I: 329Google Scholar
  218. 218.
    Tadmor OP, Keren A, Rosenak D, et al. The effect of disopyramide on uterine contractions during pregnancy. Am J Obstet Gynecol 1990; 162: 482–6PubMedGoogle Scholar
  219. 219.
    Stargel WW, Shand DG, Routledge PA, et al. Clinical comparison of rapid infusion and multiple injection methods for lidocaine loading. Am Heart J 1981; 102: 872–6PubMedGoogle Scholar
  220. 220.
    Bromage PR, Robson JD. Concentrations of lignocaine in blood after intravenous, intramuscular, epidural and endotracheal administration. Anesthesia 1961; 16: 461–78Google Scholar
  221. 221.
    Douglas JH, Ross JD, Bruce DL. Delayed awakening due to lidocaine overdose. J Clin Anesthesia 1990; 2: 126–8Google Scholar
  222. 222.
    Palmisano IM, Meliones JN, Crowley DC, et al. Lidocaine toxicity after subcutaneous infiltration in children undergoing cardiac catheterization. Am J Cardiol 1991; 67: 647–8PubMedGoogle Scholar
  223. 223.
    Bauer LA, Brown T, Gibaldi M, et al. Influence of long-term infusion on lidocaine kinetics. Clin Pharmacol Ther 1982; 31: 433–7PubMedGoogle Scholar
  224. 224.
    Halkin H, Meffin, P, Melmon KL, et al. Influence of congestive heart failure on blood levels of lidocaine and its active monodeethylated metabolite. Clin Pharmacol Ther 1975; 17: 669–76PubMedGoogle Scholar
  225. 225.
    Thomson PD, Melmon KL, Richardson JA, et al. Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Ann Int Med 1973; 78: 499–508PubMedGoogle Scholar
  226. 226.
    Tatsukawa H, Okuda J, Kondoh M, et al. Malignant hyperthermia caused by intravenous lidocaine for ventricular arrhythmia. Int Med 1992; 31: 1069–71Google Scholar
  227. 227.
    Manolis AS, Deering TF, Cameron J, et al. Mexiletine: pharmacology and therapeutic use. Clin. Cardiol. 1990; 13: 349–59PubMedGoogle Scholar
  228. 228.
    Leahey EB, Giardina EGV, Bigger Jr JT. Effect of ventricular failure on steady state kinetics of mexiletine [abstract]. Clin. Res 1980; 26: 239Google Scholar
  229. 229.
    Nitsch J, Steinbeck G, Luderitz B. Increase of mexiletine plasma levels due to delayed hepatic metabolism in patients with chronic liver disease. Eur Heart J 1983; 4: 810–4PubMedGoogle Scholar
  230. 230.
    El AIM D, Henrard L, Crochelet L, et al. Pharmacokinetics of mexiletine in renal insufficiency. Br J Clin Pharmacol 1982; 14: 431–5Google Scholar
  231. 231.
    Wang T, Wuellner D, Woosley RL, et al. Pharmacokinetics and nondialysability of mexiletine in renal failure. Clin Phamacol Ther 1985; 37: 649–53Google Scholar
  232. 232.
    Yamazaki S, Katayama I, Kurumaji Y, et al. Contact urticaria induced by mexiletine hydrochloride in a patient receiving iontophoresis. Br J Dermatol 1994; 130: 538–40PubMedGoogle Scholar
  233. 233.
    Kikuchi K, Tsunoda T, Tagami H. Generalized drug eruption due to mexiletine hydrochloride: topical provocation on previously involved skin. Contact Dermatitis 1991; 25: 70–2PubMedGoogle Scholar
  234. 234.
    Campbell NPS, Pantridge JF, Adgey AAJ. Long term oral antiarrhythmic therapy with mexiletine. Br Heart J 1978; 40: 796–801PubMedGoogle Scholar
  235. 235.
    Fasola GP, d’Osualdo F, de Pangher V, et al. Thrombocytopenia and mexiletine [letter]. Ann Intern Med 1984; 100: 162PubMedGoogle Scholar
  236. 236.
    Girmann G, Pees H, Scheurlen PG. Pseudothrombocytopenia and mexiletine [letter]. Ann Intern Med 1984; 100: 767PubMedGoogle Scholar
  237. 237.
    Pernot C, Marcon F, Weber JL, et al. Effets indésirables hépatiques de la mexilétine. Thérapie 1983; 38: 695–700Google Scholar
  238. 238.
    Flaker GC, Beach CL, Chapman D. Adverse side effects associated with mexiletine. Clin Prog Electrophysiol Pacing 1986; 4: 602–7Google Scholar
  239. 239.
    Bero CJ, Rihn TL. Possible association of pulmonary fibrosis with mexiletine. Drug Intell Clin Pharm 1991; 25: 1329–33Google Scholar
  240. 240.
    Baker B, Dinh H, Murphy ML. Propafenone: a promising new antiarrhythmic agent. Pract Cardiol 1988; 14: 112–7Google Scholar
  241. 241.
    Somberg JC, Tepper D, Landau S. Propafenone: a new antiarrhythmic agent. Am Heart J 1988; 115: 1274–9PubMedGoogle Scholar
  242. 242.
    Siddoway LA, Thompson KA, McAllister CB, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987; 75: 785–91PubMedGoogle Scholar
  243. 243.
    Libersa C, Caron J, Bechtel P, et al. Interest and limitation of phenotype determination of hydroxylation ability in patients treated with propafenone. J Electrophysiol 1987; 1: 466–74Google Scholar
  244. 244.
    Rouet R, Libersa C, Broly F, et al. Comparative electrophysiological effects of propafenone, 5-hydroxypropafenone, and N-depropylpropafenone on guinea pig ventricular muscle fibers. J Cardiovasc Pharmacol 1989; 14: 577–84PubMedGoogle Scholar
  245. 245.
    Kroemer HK, Fromm MF, Buhl K, et al. An enantiomerenantiomer interaction of (S) and (R) — propafenone modifies the effect of racemic drug therapy. Circulation 1994; 89: 2396–400PubMedGoogle Scholar
  246. 246.
    Kroemer HK, Funck-Brentano C, Silberstein DJ, et al. Stereoselective disposition and pharmacologic activity of propafenone enantiomers. Circulation 1989; 79: 1068–76PubMedGoogle Scholar
  247. 247.
    Boriani G, Capucci A, Stracchi F, et al. Beta-blocking properties of propafenone in extensive oxidisers: a study on heart rate behaviour during Holter monitoring. Drug Invest 1993; 6: 25–32Google Scholar
  248. 248.
    Gaita F, Richiardi E, Bocchiardo M, et al. Short and long-term effects of propafenone in ventricular arrhythmias. Int J Cardiol 1986; 13: 163–70PubMedGoogle Scholar
  249. 249.
    Guindo J, Rodriguez de la Serna AR, Borja J, et al. Propafenone and a syndrome of the lupus erythematosus type [letter]. Ann Intern Med 1986; 104: 589PubMedGoogle Scholar
  250. 250.
    Hammill SC, Sorenson PB, Wood DL, et al. Propafenone for the treatment of refractory complex ventricular ectopic activity. Mayo Clin Proc 1986; 61: 98–103PubMedGoogle Scholar
  251. 251.
    Spinier SA, Elder CA, Kindwall KE. Propafenone-induced liver injury. Ann Pharmacother 1992; 26: 926–8Google Scholar
  252. 252.
    Mondardini A, Pasquino P, Bernardi P, et al. Propafenone-induced liver injury: report of a case and a review of the literature. Gastroenterology 1993; 104: 1524–6PubMedGoogle Scholar
  253. 253.
    Miwa LJ, Jolson HM. Propafenone-associated agranulocytosis. Pacing Clin Electrophysiol 1992; 15: 387–90PubMedGoogle Scholar
  254. 254.
    Korst HA, Brandes JW, Littmann KP. Potenz- und Spermiogenesestorungen durch Propafenon. Dtsch Med Wochenschr 1980; 105: 1187–9PubMedGoogle Scholar
  255. 255.
    Beckmann J, Hertrampf R, Gundert-Remy U, et al. Is there a genetic factor in flecainide toxicity? [letter] BMJ 1988; 297: 1316Google Scholar
  256. 256.
    Holmes B, Heel RC, Flecainide. A preliminary review of its pharmacodynamic properties and therapeutic efficacy. Drugs 1985; 29: 1–33PubMedGoogle Scholar
  257. 257.
    Anderson JL, Jolivette DM, Fredell PA. Summary of efficacy and safety of flecainide for supraventricular arrhythmias. Am J Cardiol 1988; 62 Suppl. D: 62–6Google Scholar
  258. 258.
    Birgersdotter UM, Wong W, Turgeon J, et al. Stereoselective, genetically-determined interaction between chronic flecainide and quinidine in patients with arrhythmias. Br J Clin Pharmacol 1992; 33: 275–80PubMedGoogle Scholar
  259. 259.
    Mikus G, Gross AS, Bekmann J, et al. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin Pharmacol Ther 1989; 45: 562–7PubMedGoogle Scholar
  260. 260.
    Williams AJ, McQuinn RL, Walls J. Pharmacokinetics of flecainide acetate in patients with severe renal impairment. Clin Pharmacol Ther 1988; 43: 449–55PubMedGoogle Scholar
  261. 261.
    McQuinn RL, Pentikàinen PJ, Chang SF, et al. Pharmacokinetics of flecainide in patients with cirrhosis of the liver. Clin Pharmacol Ther 1988; 44: 566–72PubMedGoogle Scholar
  262. 262.
    Galloe AM, Graudal N. Cardiac Arrhythmia Suppression Trial. New Engl J Med 1991; 325: 584–5PubMedGoogle Scholar
  263. 263.
    Samlowski WE, Frame RN, Logue GL. Flecainide-induced immune neutropenia: documentation of a hapten-mediated mechanism of cell destruction. Arch Intern Med 1987; 147: 383–4PubMedGoogle Scholar
  264. 264.
    Kuhlkamp V, Haasis R, Seipel L. Flecainidinduzierte Hepatitis. Z Kardiol 1988; 77: 678–80PubMedGoogle Scholar
  265. 265.
    Mikloweit P, Bienmuller H. Medikamentos induzierte intrahepatische Cholestase durch Flecainidacetat und Enalapril. Internist Berl 1987; 28: 193–5PubMedGoogle Scholar
  266. 266.
    Vanderhal AL, Cocjin J, Santulli Jr TV, et al. Conjugated hyperbilirubinemia in a newborn infant after maternal (transplacental) treatment with flecainide acetate for fetal tachycardia and fetal hydrops. J Ped 1995; 126: 988–90Google Scholar
  267. 267.
    Mancuso G, Tampieri E, Berdondini RM. Eruzione psoriasiforme da flecainide. G Ital Dermatol Venereol 1988; 123: 171–2PubMedGoogle Scholar
  268. 268.
    Penhall RK, Hong CY, Muhiddin KA. The effect of flecainide on human sperm mobility [abstract]. Br J Clin Pharmacol 1982; 14 Suppl: 147PGoogle Scholar
  269. 269.
    Zehender M, Treese N, Kasper W et al. Effectiveness and tolerance in long-term treatment with flecainide [abstract]. Circulation 1982; 66 Suppl. II: 144Google Scholar
  270. 270.
    Akoun GM, Cadranel JL, Israel-Biet D, et al. Flecainide-associated pneumonitis [letter]. Lancet 1991; 337: 49PubMedGoogle Scholar
  271. 271.
    Hanston P, Evrard P, Mahieu P, et al. Flecainide-associated interstitial pneumonitis [letter]. Lancet 1991; 337: 371–2PubMedGoogle Scholar
  272. 272.
    Moller HU, Thygesen K, Kruit PJ. Corneal deposits associated with flecainide. BMJ 1991; 302: 506–7PubMedGoogle Scholar
  273. 273.
    Canal M, Flouvat B, Tremblay D, et al. Pharmacokinetics in man of a new antiarrhythmic drug, cibenzoline. Eur J Clin Pharmacol 1983; 24: 509–15PubMedGoogle Scholar
  274. 274.
    Lee MA, Fenster PE, Garcia ZM, et al. Cibenzoline for symptomatic ventricular arrhythmias: a prospective, randomized, double-blind placebo-controlled trial and a long term open label study. Can J Cardiol 1989; 5: 295–8PubMedGoogle Scholar
  275. 275.
    Opie LH. Aprindine and agranulocytosis [letter]. Lancet 1980; 2: 689–90PubMedGoogle Scholar
  276. 276.
    Zipes DP, Elharrar V, Gilmour RF, et al. Studies with aprindine. Am Heart J 1980; 100: 1055–62PubMedGoogle Scholar
  277. 277.
    Casteels-Van Daele M, Beirinckx J, De Cock, et al. Pancytopenia under treatment with aprindine, a new anti-arrhythmic drug. Acta Paediatr Belg 1977; 30: 247–8PubMedGoogle Scholar
  278. 278.
    Elewaut A, Van Durme JP, Goethals L, et al. Aprindine-induced liver damage. Acta Gastroenterol Belg 1977; 40: 236–43PubMedGoogle Scholar
  279. 279.
    Herlong HF, Reid PR, Boitnott JK, et al. Aprindine hepatitis. Ann Intern Med 1978; 89: 359–61PubMedGoogle Scholar
  280. 280.
    Uetrecht JP, Woosley RL. Acetylator phenotype and lupus erythematosus. Clin Pharmacokinet 1981; 6: 118–34PubMedGoogle Scholar
  281. 281.
    Habbab MA, El-Sherif N. Drug-induced torsades de pointes: role of early afterdepolarizations and dispersion of repolarization. Am J Med 1990; 89: 241–6PubMedGoogle Scholar
  282. 282.
    Koch-Weser J. Serum procainamide levels as therapeutic guides. Clin Pharmacokinet 1977; 2: 389–402PubMedGoogle Scholar
  283. 283.
    Woosley RL, Drauer DE, Reidenberg MM, et al. Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. N Engl J Med 1978; 298: 1157–9PubMedGoogle Scholar
  284. 284.
    Sim E. Drug-induced immune-complex disease. Complement Inflamm 1989; 6: 119–26PubMedGoogle Scholar
  285. 285.
    Vivino FB, Schumacher HR. Synovial fluid characteristics and the lupus erythematosus cell phenomenon in drug-induced lupus: findings in three patients and review of pertinent literature. Arthritis Rheum 1989; 32: 560–8PubMedGoogle Scholar
  286. 286.
    Sheikh S, Seggev JS. Procainamide-induced pleural fibrosis. Am J Med 1991; 91: 313–5PubMedGoogle Scholar
  287. 287.
    Weber MT, Hocking WG. Procainamide-induced lupus anticoagulant. Wisc Med J 1988; 87: 30–2Google Scholar
  288. 288.
    Heyman MR, Flores RH, Edelman BB, et al. Procainamide-induced lupus anticoagulant. South Med J 1988; 81: 934–6PubMedGoogle Scholar
  289. 289.
    Smiley JD, Moore SE. Molecular mechanisms of autoimmunity. Am J Med Sci 1988; 295: 478–96PubMedGoogle Scholar
  290. 290.
    Chuang LC, Tunier AP, Akhtar N, et al. Possible case of procainamide-induced intrahepatic cholestatic jaundice. Ann Pharmacother 1993; 27: 434–7PubMedGoogle Scholar
  291. 291.
    Ponte CD, Horner P. Suspected procainamide-induced angioedema [letter]. Drug Intell Clin Pharm 1985; 19: 139–40PubMedGoogle Scholar
  292. 292.
    Prince RA, Brown BT, Jacknowitz A. Agranulocytosis associated with procainamide therapy: report of a case. Am J Hosp Pharm 1977; 34: 1362–5PubMedGoogle Scholar
  293. 293.
    Meisner DJ, Carlson RJ, Gottlieb AJ. Thrombocytopenia following sustained-release procainamide. Arch Intern Med 1985; 145: 700–2PubMedGoogle Scholar
  294. 294.
    Giannone L, Kugler JW, Krantz SB. Pure red cell aplasia associated with administration of sustained-release procainamide. Arch Intern Med 1987; 147: 1179–80PubMedGoogle Scholar
  295. 295.
    Agudelo CA, Wise CM, Lyles MF. Pure red cell aplasia in procainamide-induced systemic lupus erythematosus (report and review of the literature). J Rheumatol 1988; 15: 1431–2PubMedGoogle Scholar
  296. 296.
    Abe H, Suzuka H, Tasaki H, et al. Sustained-release procainamide-induced reversible granulocytopenia after myocardial infarction. Jpn Heart J 1995; 36: 483–7PubMedGoogle Scholar
  297. 297.
    Goldsmith AJ, Schaeffer BT. Necrotizing epiglottitis in a patient with procainamide-induced neutropenia. Am J Otolaryngol 1994; 15: 58–62PubMedGoogle Scholar
  298. 298.
    Landrum ELM, Siegert EA, Hanlon JT, et al. Prolonged thrombocytopenia associated with procainamide in an elderly patient. Ann Pharmacother 1994; 28: 1172–6PubMedGoogle Scholar
  299. 299.
    Ahn CS, Tow DE. Intrahepatic cholestasis due to hypersensitivity reaction to procainamide. Arch Intern Med 1990; 150: 2589–90PubMedGoogle Scholar
  300. 300.
    Rotmensch HH. Granulomatous hepatitis: hypersensitivity response to procainamide. Ann Intern Med 1978; 89: 646–7PubMedGoogle Scholar
  301. 301.
    Wiegers U, Hanrath N, Kuck KH, et al. Pharmacokinetics of tocainide in patients with renal dysfunction and during haemodialysis. Eur J Clin Pharmacol 1983; 24: 503–7PubMedGoogle Scholar
  302. 302.
    Braun J, Sorgel F, Engelmaier F, et al. Pharmacokinetics of tocainide in patients with severe renal failure. Eur J Clin Pharmacol 1985; 28: 665–70PubMedGoogle Scholar
  303. 303.
    Farquhar DL, Davidson NM. Possible hepatotoxicity of tocainide. Scott Med J 1984; 29: 238PubMedGoogle Scholar
  304. 304.
    Tucker LE. Tocainide-induced granulomatous hepatitis [letter]. JAMA 1986; 255: 3362PubMedGoogle Scholar
  305. 305.
    Arrowsmith JB, Creamer JL, Bosco L, et al. Severe dermatologic reactions reported after treatment with tocainide. Ann Intern Med 1987; 107: 693–6PubMedGoogle Scholar
  306. 306.
    Holmes GI, Shapiro DA, Nicolodi LK, et al. Drug therapy: flecainide, and tocainide [letter]. N Engl J Med 1987; 316: 344Google Scholar
  307. 307.
    Volosin K, Greenberg RM, Greenspon AJ. Tocainide associated agranulocytosis. Am Heart J 1985; 109: 1392–3PubMedGoogle Scholar
  308. 308.
    Morrill GB. Tocainide-induced aplastic anemia. Drug Intell Clin Pharm 1989; 23: 90–1Google Scholar
  309. 309.
    Perlow GM, Jain BP, Pauker SG, et al. Tocainide-associated interstitial pneumonitis. Ann Intern Med 1981; 94: 489–90PubMedGoogle Scholar
  310. 310.
    Van Natta B, Lazarus M, Li C. Irreversible interstitial pneumonitis associated with tocainide therapy. West J Med 1988; 149: 91–2PubMedGoogle Scholar
  311. 311.
    Ahmad S. Tocainide: interstitial pneumonitis [letter]. J Am Coll Cardiol 1990; 15: 1458PubMedGoogle Scholar
  312. 312.
    Feinberg L, Travis WD, Ferrans V, et al. Pulmonary fibrosis associated with tocainide: report of a case with literature review. Am Rev Respir Dis 1990; 141: 505–8PubMedGoogle Scholar
  313. 313.
    Miura DS, Wynn J, Laitman R, et al. Ethmozine toxicity: fever of unknown origin. J Clin Pharmacol 1986; 26: 153–5PubMedGoogle Scholar
  314. 314.
    Napolitano C, Priori SG, Schwartz PJ. Torsade de pointes: mechanisms and management. Drugs 1994; 47: 51–65PubMedGoogle Scholar
  315. 315.
    Martyn R, Somberg JC, Kerin NZ. Proarrhythmia of nonantiarrhythmic drugs. Am Heart J 1993; 126: 201–5PubMedGoogle Scholar
  316. 316.
    Symanski JD, Gettes LS. Drug effects on the electrocardiogram: a review of their clinical importance. Drugs 1993; 46: 219–48PubMedGoogle Scholar
  317. 317.
    Fisch FA, Roden DM. A prolonged QTc interval: is it an important effect of antiarrhythmic drugs? Med Toxicol Adverse Drug Exp 1989; 4: 400–11Google Scholar
  318. 318.
    Monlun E, Pillet O, Cochard JF. Prolonged QT interval with halofantrine [letter]. Lancet 1993; 1541-2Google Scholar
  319. 319.
    Karbwang J, Bangchang KN, Bunnag D, et al. Cardiac effect of halofantrine [letter]. Lancet 1993; 342: 501PubMedGoogle Scholar
  320. 320.
    Singh BN, Gaarder TD, Kanegae T, et al. Liquid proteins diets and torsade de pointes. JAMA 1978; 240: 115–9PubMedGoogle Scholar
  321. 321.
    Zipes DP. Unwitting exposure to risk. Cardiol Rev 1993; 1: 1–3Google Scholar
  322. 322.
    Cumming AD, Robertson C. Interaction between disopyramide and practolol. BMJ 1979; 2: 1264PubMedGoogle Scholar
  323. 323.
    Gelipter D, Hazell M. Interaction between disopyramide and practolol [letter]. BMJ 1980; 280: 52Google Scholar
  324. 324.
    Wyse DG, Kellen J, Tarn Y, et al. Increased efficacy and toxicity of lidocaine in patients on betablockers. Int J Cardiol 1988; 21: 59–70PubMedGoogle Scholar
  325. 325.
    Lewis GP, Holtzman JL. Interaction of flecainide with digoxin and propranolol. Am J Cardiol 1984; 53 Suppl.: 52B–7BPubMedGoogle Scholar
  326. 326.
    Awaji T, Hashimoto K. Antiarrhythmic effects of combined application of class I antiarrhythmic drugs: addition of low-dose mexiletine-enhanced antiarrhythmic effects of disopyramide and aprindine in various-rate canine ventricular tachycardias. J Cardiovasc Pharmacol 1993; 21: 960–6PubMedGoogle Scholar
  327. 327.
    Greenspan AM, Spielman SR, Horowitz N. Combination antiarrhythmic drug therapy for ventricular tachyarrhythmias. Pacing Clin Electrophysiol 1986; 9: 565–76PubMedGoogle Scholar
  328. 328.
    Kim SG, Seiden SW, Matos JA, et al. Combination of procainamide and quinidine for better tolerance and additive effects for ventricular arrhythmias. Am J Cardiol 1985; 56: 84–8PubMedGoogle Scholar
  329. 329.
    Duffy CE, Swiryn S, Bauernfeind RA, et al. Inducible sustained ventricular tachycardia refractory to individual class I drugs: effect of adding a second class I drug. Am Heart J 1983; 106: 450–8PubMedGoogle Scholar
  330. 330.
    Jordaens LJ, Tavernier R, Vanmeerhaeghe X, et al. Combination of flecainide and mexiletine for the treatment of ventricular tachyarrhythmias. Pacing Clin Electrophysiol 1990; 13: 1127–35PubMedGoogle Scholar
  331. 331.
    Schwartz JB, Keefe D, Harrison DC. Adverse effects of antiarrhythmic drugs. Drugs 1981; 21: 23–45PubMedGoogle Scholar
  332. 332.
    Sheldon R, Thakore E, Wilson L. Interaction of drug metabolites with the class I antiarrhythmic drug receptor on rat cardiac myocytes. J Pharmacol Exp Ther 1994; 269: 477–81PubMedGoogle Scholar
  333. 333.
    Hartshorn EA. Interactions of cardiac drugs. Drug Intell Clin Pharm 1970; 4: 272–7Google Scholar
  334. 334.
    Buss J, Lasserre JJ, Heene DL. Asystole and cardiogenic shock due to combined treatment with verapamil and flecainide [letter]. Lancet 1992; 340: 546PubMedGoogle Scholar
  335. 335.
    Al-Shora HI. Interactions of procainamide, verapamil, guanethidine and hydralazine with adsorbent antacids and diarrhoeal mixture. Int J Pharmaceutics 1988; 47: 209–13Google Scholar
  336. 336.
    Ragosta M, Weihl AD, Rosenfield LE. Potentially fatal interaction between erythromycin and disopyramide. Am J Med 1989; 86: 465–6PubMedGoogle Scholar
  337. 337.
    Paar D, Terjung B, Sauerbruch T. Life-threatening interaction between clarithromycin and disopyramide. Lancet 1997; 349: 326–327PubMedGoogle Scholar
  338. 338.
    Haworth E, Burroughs AK. Disopyramide and warfarin interaction. BMJ 1977; 2: 866–7PubMedGoogle Scholar
  339. 339.
    Sylven C, Anderson P. Evidence that disopyramide does not interact with warfarin. BMJ 1983; 286: 1181PubMedGoogle Scholar
  340. 340.
    Jogestrand T, Schenck-Gustafsson K, Nordlander R, et al. Quin-idine-induced changes in serum and skeletal muscle digoxin concentration: evidence of saturable binding of digoxin to skeletal muscle. Eur J Clin Pharmacol 1984; 27: 571PubMedGoogle Scholar
  341. 341.
    Birgersdotter-Green U. Propafenone for cardiac arrhythmias. Am J Med Sci 1992; 303: 123–8PubMedGoogle Scholar
  342. 342.
    Data JL, Wilkinson GR, Nies AS. Interaction of quinidine with anticonvulsant drugs. N Engl J Med 1976; 294: 699–702PubMedGoogle Scholar
  343. 343.
    Twum-Barima Y, Carruthers SG. Quinidine-rifampin interaction. N Engl J Med 1981; 304: 1466–9PubMedGoogle Scholar
  344. 344.
    Aitio ML, Mansury L, Tala E, et al. The effect of enzyme-induction on the metabolism of disopyramide in man. Br J Clin Pharmacol 1981; 11: 279–85PubMedGoogle Scholar
  345. 345.
    Pentikainen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmacol 1982; 23: 261–6PubMedGoogle Scholar
  346. 346.
    Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking Cimetidine. Clin Pharmacol Ther 1985; 37: 669–73PubMedGoogle Scholar
  347. 347.
    Pritchett EL, Smith WM, Kirsten EB. Pharmacokinetic and pharmacodynamic interactions of propafenone and Cimetidine. J Clin Pharmacol 1988; 28: 619–24PubMedGoogle Scholar
  348. 348.
    Polish LB, Branch RA, Fitzgerald GA. Digitoxin-quinidine interaction: potentiation during administration of Cimetidine. South Med J 1981; 74: 633–4PubMedGoogle Scholar
  349. 349.
    Ochs HR, Carstens G, Greenblatt DJ. Reduction in lidocaine clearance during continuous infusion and by coadministration of propranolol. N Engl J Med 1980; 303: 373–7PubMedGoogle Scholar
  350. 350.
    Tisdale JE, Rudis MI, Padhi ID, et al. Disposition of procainamide in patients with chronic congestive heart failure receiving medical therapy. J Clin Pharmacol 1996; 36: 3501–6Google Scholar
  351. 351.
    Bax ND, Tucker GT, Lennard MS, et al. The impairment of lignocaine clearance by propranolol: major contribution from enzyme inhibition. Br J Clin Pharmacol 1984; 19: 597–603Google Scholar
  352. 352.
    Scheinman SJ, Poll DS, Wolfson S. Acute cardiac failure and hepatic ischemia induced by disopyramide phosphate. Yale J Biol Med 1980; 53: 361–6PubMedGoogle Scholar
  353. 353.
    Funck-Brentano C, Kroemer HK, Pavlou H, et al. Genetically-determined interaction between propafenone and low dose quinidine: role of active metabolites in modulating net drug effect. Br J Clin Pharmacol 1989; 27: 435–44PubMedGoogle Scholar
  354. 354.
    Broly F, Vandamme N, Libersa C, et al. The metabolism of mexiletine in relation to the debrisoquine/sparteine-type polymorphism of drug oxidation. Br J Clin Pharmacol 1991; 32: 459–66PubMedGoogle Scholar
  355. 355.
    Libersa C, Caron J, Broly F, et al. Interaction propafenone mexiletine [letter]. JACC 1993; 22: 2061PubMedGoogle Scholar
  356. 356.
    Mörike K, Magadum S, Mettang T, et al. Propafenone in a usual dose produces severe side-effects: the impact of genetically determined metabolic status on drug therapy. J Intern Med 1995; 238: 469–72PubMedGoogle Scholar
  357. 357.
    Munafo A, Reymond-Michel G, Biollaz J. Altered flecainide disposition in healthy volunteers taking quinine. Eur J Clin Pharmacol 1990; 38: 269–73PubMedGoogle Scholar
  358. 358.
    Holtzman JL, Finley D, Mottonen L, et al. The pharmacodynamic and pharmacokinetic interaction between single doses of flecainide acetate and verapamil: effects on cardiac function and drug clearance. Clin Pharmacol Ther 1989; 46: 26–32PubMedGoogle Scholar
  359. 359.
    Saal AK, Werner JA, Gross BW, et al. Interaction of amiodarone with quinidine and procainamide [abstract]. Circulation 1982; 66: 224Google Scholar
  360. 360.
    Somogyi A, McLean A, Heinzow B. Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur J Clin Pharmacol 1983; 25: 339–5PubMedGoogle Scholar
  361. 361.
    Bauer LA, Black D, Gensler A. Procainamide-cimetidine drug interaction in elderly male patients. J Am Geriatr Soc 1990; 38: 467–9PubMedGoogle Scholar
  362. 362.
    Christian Jr CD, Meredith CG, Speeg Jr KV. Cimetidine inhibits renal procainamide clearance. Clin Pharmacol Ther 1984; 36: 221–7PubMedGoogle Scholar
  363. 363.
    Kosoglou T, Rocci ML, Vlasses PH. Trimethoprim alters the disposition of procainamide and iV-acetylprocainamide. Clin Pharmacol Ther 1988; 44: 467–77PubMedGoogle Scholar
  364. 364.
    Woosley RL. Pharmacokinetics and pharmacodynamics of antiarrhythmic agents with congestive heart failure. Am Heart J 1987; 114: 1280–91PubMedGoogle Scholar
  365. 365.
    Garson Jr A. Dosing the newer antiarrhythmic drugs in children: consideration in pediatric pharmacology. Am J Cardiol 1986; 57: 1405–7PubMedGoogle Scholar
  366. 366.
    Roden DM. The study of pharmacokinetics and pharmacodynamics as a tool for understanding mechanisms of antiarrhythmic drug action. In: Breithardt G, Borggrefe M, Camm J, et al., editors. Antiarrhythmic drugs. Berlin Heidelberg: Springer-Verlag, 1995: 290–9Google Scholar

Copyright information

© Adis International Limited 1997

Authors and Affiliations

  • Jacques Caron
    • 1
  • Christian Libersa
    • 2
    • 3
  1. 1.Centre Régional de Pharmacovigilance, Service de Pharmacologie Hospitalière, Faculté de MédecineUniversité Droit et SantéLilleFrance
  2. 2.Unité de Pharmacologie Clinique, Service de Pharmacologie Hospitalière, Faculté de MédecineUniversité Droit et SantéLilleFrance
  3. 3.Clinical Investigation Center CH&U — INSERMHôpital CardiologiqueLilleFrance

Personalised recommendations