Skip to main content
Log in

Drug Interactions with Proton Pump Inhibitors

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Omeprazole, lansoprazole and pantoprazole are all mainly metabolised by the polymorphically expressed cytochrome P450 (CYP) isoform CYP2C19 (S-mephenytoin hydroxylase). All 3 proton pump inhibitors have a very limited potential for drug interactions at the CYP level. Small effects on CYP reported for these compounds are usually of no clinical relevance. No dose related adverse effects have been identified, suggesting that the small proportion of slow metabolisers is at no additional risk for clinically important drug interactions.

The absorption of some compounds, e.g. benzylpenicillin (penicillin G), are altered during treatment with proton pump inhibitors as a result of the increased intragastric pH. A synergy has been confirmed between omeprazole and amoxicillin or clarithromycin in the antibacterial effect against Helicobacter pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fellenius E, Berglindh T, Sachs G, et al. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H++ K+)ATPase. Nature 1981; 290: 159–61

    PubMed  CAS  Google Scholar 

  2. Lindberg P, Nordberg P, Alminger T, et al. The mechanism of action of the gastric acid secretion inhibitor omeprazole. J Med Chem 1986; 29: 1327–9

    PubMed  CAS  Google Scholar 

  3. Shin JM, Besancon M, Prinz C, et al. Continuing development of acid pump inhibitors: site of action of pantoprazole. Aliment Pharmacol Ther 1994; 8 Suppl. 1: 11–23

    PubMed  CAS  Google Scholar 

  4. Lind T, Cederberg C, Ekenved G, et al. Effect of omeprazole — a gastric proton pump inhibitor — on pentagastrin stimulated acid secretion in man. Gut 1983; 24: 270–6

    PubMed  CAS  Google Scholar 

  5. Brändström A, Lindberg P, Bergman NÅ, et al. Chemical reactions of omeprazole and omeprazole analogues. Acta Chem Scand 1989; 43: 536–611

    Google Scholar 

  6. Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors. Clin Pharmacokinet 1996; 31(1): 9–28

    PubMed  CAS  Google Scholar 

  7. Pilbrant Å, Cederberg C. Development of an oral formulation of omeprazole. Scand J Gastroenterol 1985; 20 Suppl. 108: 113–20

    CAS  Google Scholar 

  8. Andersson T, Andrén K, Cederberg C, et al. Bioavailability of omeprazole as enteric coated (EC) granules in conjunction with food on the first and seventh days of treatment. Drug Invest 1990; 2: 184–8

    Google Scholar 

  9. Benet LZ, Zech K. Pharmacokinetics — a relevant factor for the choice of a drug?. Aliment Pharmacol Ther 1994; 8 Suppl. 1: 25–32

    PubMed  Google Scholar 

  10. Delhotal-Landes B, Cournot A, Vermerie N, et al. The effect of food and antacids on lansoprazole absorption and disposition. Eur J Drug Metab Dispos 1991; Special Issue No III: 315-20

  11. Bergstrand R, Grind M, Nyberg G, et al. Decreased oral bioavailability of lansoprazole in healthy volunteers when given with a standardised breakfast. Clin Drug Invest 1995; 9: 67–71

    Google Scholar 

  12. Tuynman HARE, Festen HPM, Röhss K. Lack of effect of antacids on plasma concentrations of omeprazole given as enteric-coated granules. Br J Clin Pharmacol 1987; 24; 833–5

    PubMed  CAS  Google Scholar 

  13. Hartmann M, Bliesath H, Huber R, et al. Lack of influence of antacids on the pharmacokinetics of the new gastric H+/ K+-ATPase inhibitor pantoprazole [abstract]. Gastroenterology 1994; 106 Suppl.: A91

    Google Scholar 

  14. Lanzon-Miller S, Pounder RE, Hamilton MR, et al. Twenty-four-hour intragastric acidity and plasma gastrin concentration before and during treatment with either ranitidine or omeprazole. Aliment Pharmacol Ther 1987; 1: 239–51

    PubMed  CAS  Google Scholar 

  15. Mayersohn M. Physiological factors that modify systemic drug availability and pharmacologic response in clinical practice. In: Blanchard et al., editors. Principles and perspectives in drug bioavailability. Basel: Karger, 1979: 211–73

    Google Scholar 

  16. Oosterhuis B, Jonkman JHG, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 1991; 32: 569–72

    PubMed  CAS  Google Scholar 

  17. Soons PA, van den Berg G, Danhof M, et al. Influence of single-and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 1992; 42: 319–24

    PubMed  CAS  Google Scholar 

  18. Cohen AF, Kroon R, Schoemaker R, et al. Influence of gastric acidity on the bioavailability of digoxin. Ann Intern Med 1991; 115: 540–5

    PubMed  CAS  Google Scholar 

  19. Paulsen O, Höglund P, Walder M. No effect of omeprazole induced hypoacidity on the bioavailability of amoxycillin or bacampicillin. Scand J Infect Dis 1989; 21: 219–23

    PubMed  CAS  Google Scholar 

  20. Bergstrand R, Idström JP, Eriksson S. Bioavailability of penicillin during omeprazole treatment. Sweden: Astra Hässle AB, 1996 (Data on file)

    Google Scholar 

  21. Hartmann M, Huber R, Bliesath H, et al. Lack of interaction between pantoprazole and digoxin at therapeutic doses in man [Abstracts]. In: Management of acid-related diseases: focus on pantoprazole. Berlin: Charité, 1993: 34–5

    Google Scholar 

  22. Bliesath H, Huber R, Hartmann M, et al. Pantoprazole does not influence the steady-state pharmacokinetics of nifedipine [abstract]. Gastroenterol 1994; 106 Suppl.: A55

    Google Scholar 

  23. Piscitelli SC, Goss TF, Wilton JH, et al. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob Agents Chemother 1991; 35: 1765–71

    PubMed  CAS  Google Scholar 

  24. Nebert DW, McKinnon RA. Cytochrome P450: evolution and functional diversity. In: Prog Liver Dis 1994; 12: 63–97

    CAS  Google Scholar 

  25. de Morais SMF, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of 5-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–22

    PubMed  Google Scholar 

  26. Nielsen MD, Brösen K, Gram LF. A dose — effect study of the in vivo inhibitory effect of quinidine on sparteine oxidation in man. Br J Clin Pharmacol 1990; 29: 299–304

    PubMed  CAS  Google Scholar 

  27. Goldstein JA, Faletto MB, Romkes-Sparks M, et al. Evidence that CYP2C19 is the major (S)-mephenytoin 4′-hydroxylase in humans. Biochemistry 1994; 33: 1743–52

    PubMed  CAS  Google Scholar 

  28. Andersson T, Regårdh CG, Dahl-Puustinen ML, et al. Slow omeprazole metabolizers are also poor 5-mephenytoin hydroxylators. Ther Drug Monit 1990; 12: 415–6

    PubMed  CAS  Google Scholar 

  29. Andersson T, Regârdh CG, Lou YC, et al. Polymorphic hydroxylation of 5-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics 1992; 2: 25–31

    PubMed  CAS  Google Scholar 

  30. Sohn DR, Kobayashi K, Chiba K, et al. Disposition kinetics and metabolism of omeprazole in extensive and poor metabolizers of 5-mephenytoin 4-hydroxylation recruited from an oriental population. J Pharmacol Exp Ther 1992; 262: 1195–202

    PubMed  CAS  Google Scholar 

  31. Ishizaki T, Sohn DR, Kobayashi K, et al. Interethnic differences in omeprazole metabolism in the two 5-mephenytoin hydrox-ylation phenotypes studied in Caucasians and Orientals. Ther Drug Monit 1994; 16: 214–5

    PubMed  CAS  Google Scholar 

  32. Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 1993; 36: 521–30

    PubMed  CAS  Google Scholar 

  33. Chiba K, Kobayashi K, Manabe K, et al. Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4′-hydroxylation. J Pharmacol Exp Ther 1993; 266: 52–9

    PubMed  CAS  Google Scholar 

  34. Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br J Clin Pharmacol 1994; 37: 597–604

    PubMed  CAS  Google Scholar 

  35. Tucker GT. The interaction of proton pump inhibitors with cytochromes P450. Aliment Pharmacol Ther 1994; 8 Suppl. 1: 33–8

    PubMed  CAS  Google Scholar 

  36. Huber R, Kohl B, Sachs G, et al. Review article: the continuing development of proton pump inhibitors with particular reference to pantoprazole. Aliment Pharmacol Ther 1995; 9: 363–78

    PubMed  CAS  Google Scholar 

  37. Schultz HU, Hartmann M, Steinijans VW, et al. Lack of influence of pantoprazole on the disposition kinetics of theophylline in man. Int J Clin Pharmacol Ther Toxicol 1991; 29: 369–75

    Google Scholar 

  38. Pantuck EJ, Hsiao KC, Maggio A, et al. Effect of cigarette smoking on phenacetin metabolism. Clin Pharmacol Ther 1974; 15: 9–17

    PubMed  CAS  Google Scholar 

  39. Pantuck EJ, Pantuck CB, Garland WA, et al. Stimulatory effect of brussel sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 1979; 25: 88–95

    PubMed  CAS  Google Scholar 

  40. Conney AH, Pantuck EJ, Hsiao KC, et al. Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1976; 20: 633–42

    PubMed  CAS  Google Scholar 

  41. Grant DM, Campbell ME, Tang BK, et al. Biotransformation of caffeine by microsomes from human liver. Biochem Pharmacol 1987; 36: 1251–60

    PubMed  CAS  Google Scholar 

  42. Sesardic D, Boobis AR, Edwards RJ, et al. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol 1988; 26: 363–72

    PubMed  CAS  Google Scholar 

  43. Robson RA, Miners JO, Matthews AP, et al. Characterisation of theophylline metabolism by human liver microsomes. Biochem Pharmacol 1988; 37: 1651–9

    PubMed  CAS  Google Scholar 

  44. Sarkar MA, Hunt C, Guzelian PS, et al. Characterisation of human liver cytochromes P450 involved in theophylline metabolism. Drug Metab Dispos 1992; 20: 31–7

    PubMed  CAS  Google Scholar 

  45. Zhang ZY, Kaminsky LS. Characterisation of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol 1995; 50: 205–11

    PubMed  CAS  Google Scholar 

  46. Andersson T, Bergstrand R, Cederberg C, et al. Omeprazole treatment does not affect the metabolism of caffeine. Gastro-enterology 1991; 101: 943–7

    CAS  Google Scholar 

  47. Rost KL, Brösicke H, Brockmöller J, et al. Increase of cytochrome P4501A2 activity by omeprazole: evidence by the 13C-(N-3-methyl)-caffeine breath test in poor and extensive metabolizers of 5-mephenytoin. Clin Pharmacol Ther 1992; 52: 170–80

    PubMed  CAS  Google Scholar 

  48. Xiaodong S, Gatti G, Bartoli A, et al. Omeprazole does not enhance the metabolism of phenacetin, a marker of CYP1A2 activity, in healthy volunteers. Ther Drug Monit 1994; 16: 248–50

    PubMed  CAS  Google Scholar 

  49. Gugler R, Jensen JC. Drugs other than H2-receptor antagonists as clinically important inhibitors of drug metabolism in vivo. Pharmacol Ther 1987; 33: 133–7

    PubMed  CAS  Google Scholar 

  50. Oosterhuis B, Jonkman JHG, Andersson T, et al. No influence of single intravenous doses of omeprazole on theophylline elimination kinetics. J Clin Pharmacol 1992; 32: 470–5

    PubMed  CAS  Google Scholar 

  51. Taburet AM, Geneve J, Bocquentin M, et al. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol 1992; 42: 343–5

    PubMed  CAS  Google Scholar 

  52. Granneman G, Winters EP, Locke CS, et al. Lack of effect of concomitant lansoprazole on steady state theophylline pharmacokinetics [abstract]. Gastroenterology 1991; 100: A75

    Google Scholar 

  53. Doecke CJ, Veronese ME, Pond SM, et al. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes. Br J Clin Pharmacol 1991; 31: 125–30

    PubMed  CAS  Google Scholar 

  54. Yasumori T, Chen LS, Li QH, et al. Regio- and stereo-selective metabolism of phenytoin by cytochrome P450s in human livers [abstract]. Proceedings from 10th International Symposium on Microsomes & Drug Oxidations: 1994 Jul 18-21; Toronto, Canada; 588

    Google Scholar 

  55. Relling MV, Aoyama T, Gonzales FJ, et al. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 252: 442–7

    PubMed  CAS  Google Scholar 

  56. Chen LS, Yasumori T, Yamazoe Y, et al. Hepatic microsomal tolbutamide hydroxylation in Japanese: in vitro evidence for rapid and slow metabolisers. Pharmacogenetics 1993; 3: 77–85

    PubMed  CAS  Google Scholar 

  57. Tassaneeyakul W, Veronese ME, Birkett DJ, et al. Co-regulation of phenytoin and tolbutamide metabolism in humans. Br J Clin Pharmacol 1992; 34: 494–8

    PubMed  CAS  Google Scholar 

  58. Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P450C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993; 43: 234–9

    PubMed  CAS  Google Scholar 

  59. Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism- studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 1985; 89: 1235–41

    PubMed  CAS  Google Scholar 

  60. Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol 1987; 24: 543–5

    PubMed  CAS  Google Scholar 

  61. Bachmann KA, Sullivan TJ, Jauregui L, et al. Absence of an inhibitory effect of omeprazole and nizatidine on phenytoin disposition, a marker of CYP2C activity. Br J Clin Pharmacol 1993; 36: 380–2

    PubMed  CAS  Google Scholar 

  62. Andersson T, Lagerström PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit 1990; 12: 329–33

    PubMed  CAS  Google Scholar 

  63. Karol MD, Mukherji D, Cavanaugh JH. Lack of effect of concomitant multi-dose lansoprazole on single-dose phenytoin pharmacokinetics in subjects [abstract]. Gastroenterology 1994; 106 Suppl.:A103

    Google Scholar 

  64. Middle MV, Müller FO, Schall R, et al. No influence of pantoprazole on the pharmacokinetics of phenytoin. Int J Clin Pharmacol Ther 1995; 33: 304–7

    PubMed  CAS  Google Scholar 

  65. Sutfin T, Balmér K, Boström H, et al. Stereoselective interaction of omeprazole with warfarin in healthy men. Ther Drug Monit 1989; 11: 176–84

    PubMed  CAS  Google Scholar 

  66. Unge P, Svedberg LE, Nordgren A, et al. A study of the interaction of omeprazole and warfarin in anticoagulated patients. Br J Clin Pharmacol 1992; 34: 509–12

    PubMed  CAS  Google Scholar 

  67. Cavanaugh JH, Winters EP, Cohen A, et al. Lack of effect of lansoprazole on steady state warfarin metabolism [abstract]. Gastroenterology 1991; 100 Suppl.: A40

    Google Scholar 

  68. Duursema L, Müller FO, Schall R, et al. Lack of effect of pantoprazole on the pharmacodynamics and pharmacokinetics of warfarin. Br J Clin Pharmacol 1995; 39: 700–3

    PubMed  CAS  Google Scholar 

  69. Toon S, Holt BL, Mullins FGP, et al. Effects of cimetidine, ranitidine and omeprazole on tolbutamide metabolism. J Pharm Pharmacol 1995; 47: 85–8

    CAS  Google Scholar 

  70. Hall SD, Hamman MA, Rettie AE, et al. Relationships between the levels of cytochrome P4502C9 and its prototypic catalytic activities in human liver microsomes. Drug Metab Dispos 1994; 22: 975–8

    PubMed  CAS  Google Scholar 

  71. Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquine, hydroxylation phe-notype. Clin Pharmacol Ther 1989; 45: 348–55

    PubMed  CAS  Google Scholar 

  72. Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38: 131–7

    PubMed  CAS  Google Scholar 

  73. Funck-Brentano C, Bosco O, Jacqz-Aigrain E, et al. Relation between chloroguanide bioactivation to cycloguanil and the genetically determined metabolism of mephenytoin in humans. Clin Pharmacol Ther 1992; 51: 507–12

    PubMed  CAS  Google Scholar 

  74. Birkett DJ, Rees D, Andersson T, et al. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 1994; 37: 413–20

    PubMed  CAS  Google Scholar 

  75. Andersson T, Cederberg C, Edvardsson G, et al. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 1990; 47: 79–85

    PubMed  CAS  Google Scholar 

  76. Andersson T, Andrén K, Cederberg C, et al. Effect of omeprazole and cimetidine on plasma diazepam levels. Eur J Clin Pharmacol 1990; 39: 51–4

    PubMed  CAS  Google Scholar 

  77. Lefebvre RA, Flouvat B, Karolac-Tamisier S, et al. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther 1992; 52: 458–63

    PubMed  CAS  Google Scholar 

  78. Gugler R, Hartmann M, Rudi J, et al. Lack of interaction of pantoprazole and diazepam in man [abstract]. Gastroenterology 1992; 102 Suppl.: A77

    Google Scholar 

  79. Wang SL, Huang JD, Lai MD, et al. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: Polymorphism in RFLP and DNA sequence of CYP2D6. Clin Pharmacol Ther 1993; 53: 410–8

    PubMed  CAS  Google Scholar 

  80. Lennard MS, Silas JH, Freestone S, et al. Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1982; 14: 301–3

    PubMed  CAS  Google Scholar 

  81. Andersson T, Lundborg P, Regårdh CG. Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol 1991; 40: 61–5

    PubMed  CAS  Google Scholar 

  82. Henry D, Brent P, Whyte I, et al. Propranolol steady-state pharmacokinetics are unaltered by omeprazole. Eur J Clin Pharmacol 1987; 33: 369–73

    PubMed  CAS  Google Scholar 

  83. Ward SA, Walle UK, Wilkinson GR, et al. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 1989; 45: 72–9

    PubMed  CAS  Google Scholar 

  84. Cavanaugh JH, Schneck DW, Mukherji D, et al. Lack of effect of concomitant lansoprazole on single-dose propranolol pharmacokinetics and pharmacodynamics [abstract]. Gastroenterology 1994; 106 Suppl.: A4

    Google Scholar 

  85. Koch HJ, Hartmann M, Bliesath H, et al. Pantoprazole does not influence metoprolol pharmacokinetics in man [abstract]. Gastroenterology 1996; 110 Suppl.: A158

    Google Scholar 

  86. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 1991; 4: 168–79

    PubMed  CAS  Google Scholar 

  87. Jönsson KÅ, Jones AW, Boström H, et al. Lack of effect of omeprazole, cimetidine, and ranitidine on the pharmacokinetics of ethanol in fasting male volunteers. Eur J Clin Pharmacol 1992; 42: 209–12

    PubMed  Google Scholar 

  88. Roine R, Hernandez-Munoz R, Baraona E, et al. Effect of omeprazole on gastric first-pass metabolism of ethanol. Dig Dis Sci 1992; 37: 891–6

    PubMed  CAS  Google Scholar 

  89. Pozzato G, Franzin F, Moretti M, et al. Effects of omeprazole on ethanol metabolism: an in vitro and in vivo rat and human study. Pharmacol Res 1994; 29: 47–58

    PubMed  CAS  Google Scholar 

  90. Minocha A, Singh Rahal P, Brier ME, et al. Omeprazole therapy does not affect pharmacokinetics of orally administered ethanol in healthy male subjects. J Clin Gastroenterol 1995; 21: 107–9

    PubMed  CAS  Google Scholar 

  91. Girre C, Coutelle C, David P, et al. Lack of effect of lansoprazole on the pharmacokinetics of ethanol in male volunteers [abstract]. Gastroenterology 1994; 106 Suppl.: A504

    Google Scholar 

  92. Teyssen S, Singer MV, Heinze H, et al. Pantoprazole does not influence the pharmacokinetics of ethanol in healthy volunteers [abstract]. Gastroenterology 1996; 110 Suppl.: A277

    Google Scholar 

  93. Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: Identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43: 630–5

    PubMed  CAS  Google Scholar 

  94. Watkins PB, Wrighton SA, Maurel P, et al. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci USA 1985; 82: 6310–4

    PubMed  CAS  Google Scholar 

  95. Kerlan V, Dreano Y, Bercovici JP, et al. Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes. Biochem Pharmacol 1992; 44: 1745–56

    PubMed  CAS  Google Scholar 

  96. Bargetzi MJ, Aoyama T, Gonzales FJ, et al. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clin Pharmacol Ther 1989; 46: 521–7

    PubMed  CAS  Google Scholar 

  97. Gonzalez FJ, Schmid BJ, Umeno M, et al. Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA 1988; 7: 79–86

    PubMed  CAS  Google Scholar 

  98. Guengerich FP, Miiller-Enoch D, Blair IA. Oxidation of quinidine by human liver cytochrome P-450. Mol Pharmacol 1986; 30: 287–95

    PubMed  CAS  Google Scholar 

  99. Blohmé I, Idström JP, Andersson T. A study of the interaction between omeprazole and cyclosporine in renal transplant patients. Br J Clin Pharmacol 1993; 35: 156–60

    PubMed  Google Scholar 

  100. Tateishi T, Graham SG, Krivoruk Y, et al. Omeprazole does not affect measured CYP3A4 activity using the erythromycin breath test. Br J Clin Pharmacol 1995; 40: 411–2

    PubMed  CAS  Google Scholar 

  101. Galbraith RA, Michnovicz JJ. Omeprazole fails to alter the cytochrome P450-dependent 2-hydroxylation of estradiol in male volunteers. Pharmacology 1993; 47: 8–12

    PubMed  CAS  Google Scholar 

  102. Noble DW, Bannister J, Lamont M, et al. The effect of oral omeprazole on the disposition of lignocaine. Anaesthesia 1994; 49; 497–500

    PubMed  CAS  Google Scholar 

  103. Ching MS, Elliott SL, Stead CK, et al. Quinidine single dose pharmacokinetics and pharmacodynamics are unaltered by omeprazole. Aliment Pharmacol Ther 1991; 5: 523–31

    PubMed  CAS  Google Scholar 

  104. Meyer BH, Maree JS, Müller FO, et al. Lack of interaction between an oral contraceptive and lansoprazole or omeprazole [abstract]. African Pharmaceutical Society Congress: 1993 Sep 21-24

  105. Fuchs W, Sennewald R, Klotz U. Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol 1994; 38: 376–80

    PubMed  CAS  Google Scholar 

  106. Middle MV, Müller FO, Schall R, et al. Effect of pantoprazole on ovulation suppression by a low-dose hormonal contraceptive. Clin Drug Invest 1995; 9: 54–6

    Google Scholar 

  107. Ball SE, Forrester LM, Wolf CR, et al. Differences in the cytochrome P-450 isoenzymes involved in the 2-hydroxylation of oestradiol and 17α-ethinylestradiol. Biochem J 1990; 267: 221–6

    PubMed  CAS  Google Scholar 

  108. Cavanaugh JH, Locke C, Karol M. Lack of interaction of lansoprazole or omeprazole with prednisone [abstract]. Am J Gastroenterol 1993; 88: 1589

    Google Scholar 

  109. Naidu MUR, Shobha JC, Dixit VK, et al. Effect of multiple dose omeprazole on the pharmacokinetics of carbamazepine. Drug Invest 1994; 7: 8–12

    Google Scholar 

  110. Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism, role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994; 47: 1969–79

    PubMed  CAS  Google Scholar 

  111. Böttiger Y, Bertilsson L. No effect on plasma carbamazepine concentration with concomitant omeprazole treatment. Clin Drug Invest 1995; 9: 180–1

    Google Scholar 

  112. Rost KL, Brösicke H, Heinemeyer G, et al. Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 1994; 20: 1204–12

    PubMed  CAS  Google Scholar 

  113. Reill L, Erhardt F, Fischer R, et al. Effect of oral pantoprazole on 24-h intragastric pH, serum gastrin profile and drug metabolizing enzyme activity in man — a placebo-controlled comparison with ranitidine [abstract]. Gut 1993; 34 Suppl.: 63

    Google Scholar 

  114. Clark DWJ. Genetically determined variability in acetylation and oxidation. Drugs 1985; 29: 342–75

    PubMed  CAS  Google Scholar 

  115. Gustavson LE, Kaiser JF, Edmonds AL, et al. Effect of omeprazole on concentrations of clarithromycin in plasma and gastric tissue at steady state. Antimicrob Agents Chemother 1995; 39: 2078–83

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unge, P., Andersson, T. Drug Interactions with Proton Pump Inhibitors. Drug-Safety 16, 171–179 (1997). https://doi.org/10.2165/00002018-199716030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199716030-00003

Keywords

Navigation