Drug Safety

, Volume 16, Issue 1, pp 9–47 | Cite as

Clinical Applications of Commonly Used Contemporary Antidotes

A US Perspective
  • Carol A. Bowden
  • Edward P. Krenzelok
Review Articles Drug Experience


Poisonings are a common problem. In 1995, over 2 million exposures were reported to American poison information centres alone. The majority of poisoning exposures can be treated without major therapeutic intervention. If therapy is indicated, it is usually in the form of gastrointestinal decontamination with activated charcoal, to prevent absorption of the toxin and the subsequent toxicity that may occur.

In a limited number of cases, more aggressive life-support measures may be necessary to treat the adverse effects of poisons. Occasionally, that intervention may include the use of pharmacological antagonists, more commonly referred to as antidotes.

According to the American Association of Poison Control Centers, the most commonly used antidotes are acetylcysteine, naloxone, atropine, deferoxamine (desferrioxamine) and antivenins. Overall, 17 antidotes account for 99% of all antidote use and those agents are reviewed in this article.

With the exception of naloxone, most antidotes have pharmacological effects that are independent of their inherent antidotal properties. Therefore, antidotes should be used judiciously because their pharmacological properties may exacerbate pre-existing toxicity and only in rare circumstances are they used prophylactically. Some antidotes, such as digoxin-specific antigen binding fragments (digoxin immune Fab), are very expensive, and both the risk: benefit ratio and the associated cost should be considered before the antidote is administered.

The principle aims are to ‘treat the patient, not the poison’ and to do no harm to the patient. Antidotes should be used only when they are indicated and may help a patient.


Naloxone Flumazenil Physostigmine Blood Lead Level Deferoxamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Litovitz TL, Felberg L, White S, et al. 1995 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 1996; 14:487–537PubMedGoogle Scholar
  2. 2.
    Litovitz TL, Felberg L, Soloway RA, et al. 1994 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 1995; 13: 551–97PubMedGoogle Scholar
  3. 3.
    Litovitz T, Veltri JC. 1984 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1985; 3: 423–50PubMedGoogle Scholar
  4. 4.
    Litovitz TL, Normann SA, Veltri JC. 1985 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1986; 4: 427–58PubMedGoogle Scholar
  5. 5.
    Litovitz TL, Martin TG, Schmitz B. 1986 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1987; 5: 405–45PubMedGoogle Scholar
  6. 6.
    Litovitz TL, Schmitz BF, Matyunas N, et al. 1987 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1988; 6: 479–515PubMedGoogle Scholar
  7. 7.
    Litovitz TL, Schmitz BF, Holm KC. 1988 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1989; 7: 495–545PubMedGoogle Scholar
  8. 8.
    Litovitz TL, Schmitz BF, Bailey KM. 1989 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1990; 8: 394–442PubMedGoogle Scholar
  9. 9.
    Litovitz TL, Bailey KM, Schmitz BF, et al. 1990 annual report of the American Association of Poison Control Centers National Data Collection system. Am J Emerg Med 1991; 9: 461–509PubMedGoogle Scholar
  10. 10.
    Litovitz TL, Holm KC, Bailey KM, et al. 1991 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1992; 10: 452–505PubMedGoogle Scholar
  11. 11.
    Litovitz TL, Holm KC, Clancy C, et al. 1992 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 1993; 11: 494–555PubMedGoogle Scholar
  12. 12.
    Litovitz TL, Clark LR, Soloway RA. 1993 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 1994; 12: 546–84PubMedGoogle Scholar
  13. 13.
    Veltri JC, Litovitz TL. 1983 annual report of the American Association of Poison Control Centers National Data Collection System. Am J Emerg Med 1984; 2: 420–43PubMedGoogle Scholar
  14. 14.
    Krenzelok EP, Leikin JB. Approach to the poisoned patient. Dis Month 1996; 42: 511–607Google Scholar
  15. 15.
    Hoffman JR, Schringer DL, Luo JS. The empiric use of naloxone in patients with altered mental status: a reappraisal. Ann Emerg Med 1991; 20: 246–52PubMedGoogle Scholar
  16. 16.
    Redbook®. Montvale, NJ: Medical Economics, 1995Google Scholar
  17. 17.
    Smilkstein MJ, Knapp GL, Kulig KW, et al. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose: analysis of the national multicenter study (1976 to 1985). N Engl J Med 1988; 319: 1557–62PubMedGoogle Scholar
  18. 18.
    Lewis RK, Paloucek FP. Assessment and treatment of acetaminophen overdose. Clin Pharm 1991; 10: 765–74PubMedGoogle Scholar
  19. 19.
    Prescott LF, Roscoe P, Wright N, et al. Plasma paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet 1971; I: 519–22Google Scholar
  20. 20.
    Vale JA, Proudfoot AT. Paracetamol (acetaminophen) poisoning. Lancet 1995; 346: 547–52PubMedGoogle Scholar
  21. 21.
    Rumack BH, Matthew H. Acetaminophen poisoning and toxicity. Pediatrics 1975; 55: 871–6PubMedGoogle Scholar
  22. 22.
    Dey Laboratories, Inc. Mucosil product information. Napa, CA: Dey Laboratories, Inc., March 1991Google Scholar
  23. 23.
    Chamberlain JM, Gorman RL, Oderda GM, et al. Use of activated charcoal in a simulated poisoning with acetaminophen: a new loading dose for N-acetylcysteine?. Ann Emerg Med 1993; 22: 1398–402PubMedGoogle Scholar
  24. 24.
    Smilkstein MJ. A new loading dose for N-acety Icysteine? The answer is no [correspondence]. Ann Emerg Med 1994; 24: 538–9PubMedGoogle Scholar
  25. 25.
    Brent J. Are activated charcoal-N-acetylcysteine interactions of clinical significance?. Ann Emerg Med 1993; 22: 1860–1PubMedGoogle Scholar
  26. 26.
    North DS, Peterson RG, Krenzelok EP. Effect of activated charcoal administration on acetylcysteine serum levels in humans. Am J Hosp Pharm 1981; 38: 1022–4PubMedGoogle Scholar
  27. 27.
    Rybolt TR, Burrell DE, Shults JM, et al. In vitro coadsorption of acetaminophen and N-acetylcysteine onto activated carbon powder. J Pharm Sci 1986: 75: 904–6PubMedGoogle Scholar
  28. 28.
    Rose SR. Subtleties of managing acetaminophen poisoning. Am J Hosp Pharm 1994; 51: 3065–8PubMedGoogle Scholar
  29. 29.
    Flanagan RJ, Meredith TJ. Use of N-acetylcysteine in clinical toxicology. Am J Med 1991; 91 Suppl. 3C: 131S–9SPubMedGoogle Scholar
  30. 30.
    Smilkstein MJ, Bronstein AC, Linden C, et al. Acetaminophen overdose: a 48-hour intravenous TV-acetylcysteine treatment protocol. Ann Emerg Med 1991; 20: 1058–63PubMedGoogle Scholar
  31. 31.
    Harrison PM, Keays R, Bray GP, et al. Improved outcome of paracetamol-induced fulminant hepatic failure by late administration of acetylcysteine. Lancet 1990; 335: 1572–3PubMedGoogle Scholar
  32. 32.
    Keays R, Harrison PM, Wendon JA, et al. Intravenous acetylcysteine in paracetamol-induced fulminant hepatic failure: a prospective controlled trial. Br Med J 1991; 303: 1026–9Google Scholar
  33. 33.
    Jaimovich DG. Transport management of the patient with acute poisoning. Pediatr Clin North Am 1993; 40: 407–30PubMedGoogle Scholar
  34. 34.
    Alam SN, Roberts RJ, Fisher LJ. Age related differences in salicylamide and acetaminophen conjugation in man. J Pediatr 1977; 90: 130PubMedGoogle Scholar
  35. 35.
    Peterson RG, Rumack BH. Age as a variable in acetaminophen overdose. Arch Intern Med 1981; 141: 390–3PubMedGoogle Scholar
  36. 36.
    Peterson RG, Rumack BH. Pharmacokinetics of acetaminophen in children. Pediatrics 1978; 62: 877–9PubMedGoogle Scholar
  37. 37.
    Fine JS, Goldfrank LR. Update in medical toxicology. Pediatr Clin North Am 1992; 39: 1031–51PubMedGoogle Scholar
  38. 38.
    Fiser DH, Moss MM, Walker W. Critical care for clonidine poisoning in toddlers. Crit Care Med 1990; 18: 1124–8PubMedGoogle Scholar
  39. 39.
    Chamberlain JM, Klein BL. A comprehensive review of naloxone for the emergency physician. Am J Emerg Med 1994; 12: 650–60PubMedGoogle Scholar
  40. 40.
    Bernstein JE, Swift R. Relief of intractable pruritus with naloxone. Arch Dermatol 1979; 115: 1366–7PubMedGoogle Scholar
  41. 41.
    Martin WR. Naloxone. Ann Intern Med 1976; 85: 765–8PubMedGoogle Scholar
  42. 42.
    Wahlstrom A, Winblad B, Bixo M, et al. Human brain metabolism of morphine and naloxone. Pain 1988; 35: 121–7PubMedGoogle Scholar
  43. 43.
    Litovitz TL. The anecdotal antidotes. Emerg Med Clin North Am 1984; 2: 145–58PubMedGoogle Scholar
  44. 44.
    Lewis JM, Klein-Schwartz W, Benson BE. Continuous naloxone infusion in pediatric narcotic overdose. Am J Dis Child 1984; 138: 944–6PubMedGoogle Scholar
  45. 45.
    Romac DR. Safety of prolonged, high-dose infusion of naloxone hydrochloride for severe methadone overdose. Clin Pharm 1986; 5: 251–4PubMedGoogle Scholar
  46. 46.
    Goldfrank L, Weisman RS, Errick JK, et al. Ann Emerg Med 1986; 15: 566–70PubMedGoogle Scholar
  47. 47.
    Bradberry JC, Raebel MA. Continuous infusion of naloxone in the treatment of narcotic overdose. Drug Intell Clin Pharm 1981; 15:945–50PubMedGoogle Scholar
  48. 48.
    Osterwalder JJ. Naloxone — for intoxications with intravenous heroin and heroin mixtures — harmless or hazardous? A prospective clinical study. Clin Toxicol 1996; 34: 409–16Google Scholar
  49. 49.
    Cuss FM, Colaco CB, Baron JH. Cardiac arrest after reversal of effects of opiates with naloxone. Br Med J 1984; 288: 363–4Google Scholar
  50. 50.
    Neal JM, Owens BD, Wright SW. Hazards of antagonizing narcotic sedation with naloxone [letter]. Ann Emerg Med 1993; 22: 145–6PubMedGoogle Scholar
  51. 51.
    Gremse DA, Artman M, Boerth RC. Hypertension associated with naloxone treatment for clonidine poisoning. J Pediatr 1986; 108: 776–8PubMedGoogle Scholar
  52. 52.
    Powers RD, Donowitz LG. Endotracheal administration of emergency medications. South Med J 1984; 77: 340–1PubMedGoogle Scholar
  53. 53.
    Tandberg D, Abercrombie D. Treatment of heroin overdose with endotracheal naloxone. Ann Emerg Med 1982; 11:443–5PubMedGoogle Scholar
  54. 54.
    Doyon S, Roberts JR. Reappraisal of the ‘coma cocktail’: dextrose, flumazenil, naloxone and thiamine. Emerg Med Clin North Am 1994; 12:301–16PubMedGoogle Scholar
  55. 55.
    Kaplan JL, Marx JA. Effectiveness and safety of intravenous nalmefene for emergency department patients with suspected narcotic overdose: a pilot study. Ann Emerg Med 1993; 22: 187–90PubMedGoogle Scholar
  56. 56.
    DeBleecker J, Van Den Neucker K, Willems J. The intermediate syndrome in organophosphate poisoning: presentation of a case and review of the literature. J Toxicol Clin Toxicol 1992; 30: 321–9; 331–2Google Scholar
  57. 57.
    DeBleecker J, Van Den Neucker K, Colardyn F. Intermediate syndrome in organophosphorus poisoning: a prospective study. Crit Care Med 1993; 21: 1706–11Google Scholar
  58. 58.
    Senanayake N, Karalliedde L. Neurotoxic effects of organophosphorus insecticides: an intermediate syndrome. N Engl J Med 1987; 316: 761–3PubMedGoogle Scholar
  59. 59.
    Haddad LM. Organophosphate poisoning — intermediate syndrome [editorial]. Clin Toxicol 1992; 30: 331–2Google Scholar
  60. 60.
    Marrs TC. Organophosphate poisoning. Pharmacol Ther 1993; 58:51–66PubMedGoogle Scholar
  61. 61.
    Ellenhorn MJ, Barceloux DG. Medical toxicology: diagnosis and treatment of human poisoning. New York: Elsevier, 1988Google Scholar
  62. 62.
    Fuortes LJ, Ayebo AD, Kross BC. Cholinesterase-inhibiting insecticide toxicity. Am Fam Physician 1993; 15; 47: 1613–20PubMedGoogle Scholar
  63. 63.
    Ali-Melkkila T, Kanto J, Lisalo E. Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand 1993; 37: 633–42PubMedGoogle Scholar
  64. 64.
    Lotti M. Treatment of acute organophosphate poisoning. Med J Aust 1991; 154:51–5PubMedGoogle Scholar
  65. 65.
    Orma PS, Middleton RK. Aerosolized atropine as an antidote to nerve gas. Ann Pharmacother 1992; 26: 937–8PubMedGoogle Scholar
  66. 66.
    Rumack BH, Spoerke DG, editors. POISINDEX Information System. Denver, Colorado: MICROMEDEX, Inc., edition expires 31 August 1996Google Scholar
  67. 67.
    Bardin PG, van Eeden SF, Moolman JA, et al. Organophosphate and carbamate poisoning. Arch Intern Med 1994; 154: 1433–41PubMedGoogle Scholar
  68. 68.
    Shockley LW. The use of inhaled nebulized atropine for the treatment of malathion poisoning. Clin Toxicol 1989; 27: 183–92Google Scholar
  69. 69.
    Mills KC, Curry SC. Acute iron poisoning. Emerg Med Clin North Am 1994; 12:397–413PubMedGoogle Scholar
  70. 70.
    Swartz RD. Deferoxamine and aluminum removal. Am J Kidney Dis 1985; 6: 358–64PubMedGoogle Scholar
  71. 71.
    Alfrey AC. Dialysis encephalopathy. Kidney Int 1986; 29 Suppl. 18: 53–7Google Scholar
  72. 72.
    Curry SC. Iron. In: Reisdorff EJ, Roberts MR, Wiegenstein JG, editors. Pediatric Emergency Medicine. Philadelphia: WB Saunders, 1993: 673–9Google Scholar
  73. 73.
    Fargion S, Taddei MT, Abutti V, et al. Early iron overload in beta-thalassaemia major: when to start chelation therapy?. Arch Dis Child 1982; 57: 929–33PubMedGoogle Scholar
  74. 74.
    Pippard MJ. Desferrioxamine-induced iron excretion in humans. Bailliere’s Clin Haematol 1989: 2: 323–42Google Scholar
  75. 75.
    Falk RJ, Mattern WD, Lamanna RG, et al. Iron removal during C.A.P.D. using deferoxamine. Kidney Int 1983; 24: 110–2Google Scholar
  76. 76.
    Oliveri NF, Buncic R, Chew E, et al. Visual and auditory neurotoxicity n patients receiving subcutaneous deferoxamine infusions. N Engl J Med 1986; 314: 869–73Google Scholar
  77. 77.
    Cheney K, Gumbiner C, Benson B, et al. Survival after a severe iron poisoning treated with intermittent infusions of deferoxamine. J Toxicol Clin Toxicol 1995; 33: 61–6PubMedGoogle Scholar
  78. 78.
    Tenenbein M, Kowalski S, Sienko A, et al. Pulmonary toxic effects of continuous desferrioxamine administration in acute iron poisoning. Lancet 1992; 339: 699–701PubMedGoogle Scholar
  79. 79.
    Adamson IY, Sienko A, Tenenbein M. Pulmonary toxicity of deferoxamine in iron-poisoned mice. Toxicol Appl Pharmacol 1993; 120: 13–9PubMedGoogle Scholar
  80. 80.
    Kirking MH. Treatment of chronic iron overload. Clin Pharm 1991; 10:775–83PubMedGoogle Scholar
  81. 81.
    Turk J, Aks S, Ampuero F, et al. Successful therapy of iron intoxication in pregnancy with intravenous deferoxamine and whole bowel irrigation. Vet Hum Toxicol 1993; 35: 441–4PubMedGoogle Scholar
  82. 82.
    Vaskaridou E, Konstantopoulos K, Kyriakou D, et al. Deferoxamine treatment during early pregnancy: absence of teratogenicity in two cases. Haematologica 1993; 78: 183–4PubMedGoogle Scholar
  83. 83.
    Blake DR, Winyard P, Lunec J, et al. Cerebral and ocular toxicity induced by desferrioxamine. Q J Med 1985; 219: 345–55Google Scholar
  84. 84.
    Banner W, Tong TG. Iron poisoning. Pediatr Clin North Am 1986; 33: 393–409PubMedGoogle Scholar
  85. 85.
    Johnson CA. Management of snakebite. Am Fam Physician 1991; 44: 174–80PubMedGoogle Scholar
  86. 86.
    Russel FE. Injuries by venomous animals [abstract]. Ann Intern Med 1964; 61: 803Google Scholar
  87. 87.
    Gold BS, Barish RA. Venomous snakebites: current concepts in diagnosis, treatment and management. Emerg Med Clin North Am 1992; 10:249–67PubMedGoogle Scholar
  88. 88.
    Gold BS, Wingert WA. Snake venom poisoning in the US: a review of therapeutic practice. South Med J 1994; 87: 579–89PubMedGoogle Scholar
  89. 89.
    Wyeth Laboratories, Inc. Antivenin (Crotalidae) Polyvalent (equine origin) product information. Marietta, PA: Wyeth Laboratories, Inc., 1986Google Scholar
  90. 90.
    Blackman JR, Dillon S. Venomous snakebite: past, present and future treatment options. J Am Board Fam Pract 1992; 5: 399–405PubMedGoogle Scholar
  91. 91.
    Davidson TM, Schafer SF. Rattlesnake bites: guidelines for aggressive treatment. Postgrad Med 1994; 96: 107–14PubMedGoogle Scholar
  92. 92.
    Schauben JL, Frenia ML. Update on antidotal therapy. J Pharm Pract 1993; 2: 63–73Google Scholar
  93. 93.
    Parrish HM, Kahn MS. Snakebite during pregnancy. Obstet Gynecol 1966; 27: 468–71PubMedGoogle Scholar
  94. 94.
    Egen N, Russell F, Consroe P, et al. A new ovine Fab antivenom for north american venomous snakes [abstract]. Vet Hum Toxicol 1994; 36: 362Google Scholar
  95. 95.
    Dart RC, Siefert SA, Carroll L, et al. Human trial of an affinity purified antibody fragment for snake venom poisoning [abstract]. Vet Hum Toxicol 1994; 36: 363Google Scholar
  96. 96.
    Roche Laboratories. Romazicon™ product information. Nutley, NJ: Roche Laboratories, April 1993Google Scholar
  97. 97.
    Lheureux P, Debailleul G, De Witte O, et al. Zolpidem intoxication mimicking narcotic overdose: response to flumazenil. Hum Exp Toxicol 1990; 9: 105–7PubMedGoogle Scholar
  98. 98.
    Hoffman EJ, Warren EW. Flumazenil: a benzodiazepine antagonist. Clin Pharm 1993; 12: 641–56PubMedGoogle Scholar
  99. 99.
    Brogden RN, Goa KL. Flumazenil: a reappraisal of its pharmacological properties and therapeutic efficacy as a benzodiazepine antagonist. Drugs 1991; 42: 1061–89PubMedGoogle Scholar
  100. 100.
    Amrein R, Hetzel W, Hartman D, et al. Clinical pharmacology of flumazenil. Eur J Anaesthesiol 1988; 2 Suppl.: 65–80Google Scholar
  101. 101.
    Höjer J, Baehrendtz S, Magnusson A, et al. A placebo-controlled trial of flumazenil given by continuous infusion in severe benzodiazepine overdosage. Acta Anaesthesiol Scand 1991; 35: 584–90PubMedGoogle Scholar
  102. 102.
    Clark RF, Sage TA, Tunget C, et al Delayed onset lorazepam poisoning successfully reversed by flumazenil in a child: case report and review of the literature. Pediatr Emerg Care 1995; 11 (1): 32–4PubMedGoogle Scholar
  103. 103.
    The Flumazenil in Benzodiazepine Intoxication Multicenter Study Group. Treatment of benzodiazepine overdose with flumazenil. Clin Ther 1992; 14: 978–95Google Scholar
  104. 104.
    Haverkos GP, DiSalvo RP, Imhoff TE. Fatal seizures after flumazenil administration in a patient with mixed overdose. Ann Pharmacother 1994; 28: 1347–9PubMedGoogle Scholar
  105. 105.
    Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Public Health Service. Case studies in environmental medicine: methanol toxicity. San Rafael, CA: DeLima Associates, July 1992Google Scholar
  106. 106.
    Burkhart KK, Kulig KW. The other alcohols: methanol, ethylene glycol, and isopropanol. Emerg Med Clin North Am 1990; 8:913–8PubMedGoogle Scholar
  107. 107.
    Brown CG, Trumbull D, Klein-Schwartz W. Ethylene glycol poisoning. Ann Emerg Med 1983; 12: 501–6PubMedGoogle Scholar
  108. 108.
    Berman LB, Schreiner GE, Feys J. The nephrotoxic lesion of ethylene glycol. Ann Intern Med 1957; 46: 611–9PubMedGoogle Scholar
  109. 109.
    Factor SA, Lava NS. Ethylene glycol intoxication: a new stage in the clinical syndrome. NY State J Med 1987; 87: 179–80Google Scholar
  110. 110.
    Kruse JA. Methanol poisoning. Intensive Care Med 1992; 18: 391–7PubMedGoogle Scholar
  111. 111.
    Bolgiano EB, Barish RA. Use of new and established antidotes. Emerg Med Clin North Am 1994; 12: 317–34PubMedGoogle Scholar
  112. 112.
    DaRoza R, Henning RJ, Sunshine I, et al Acute ethylene glycol poisoning. Crit Care Med 1984; 12 (11): 1003–5PubMedGoogle Scholar
  113. 113.
    McCoy HG, Cipolle RJ, Ehlers SM, et al. Severe methanol poisoning: application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am J Med 1979; 67: 804–7PubMedGoogle Scholar
  114. 114.
    Manoguerra AS, Cipolle RJ, Zaske DE, et al. Serum concentration studies during hemodialysis in a patient with severe methanol intoxication. In: Rumack BH, Temple AR, editors. Management of the Poisoned Patient. Princeton: Science Press, 1977: 103–14Google Scholar
  115. 115.
    Gonda A, Gault H, Churchill D, et al. Hemodialysis for methanol intoxication. Am J Med 1978; 64: 749–58PubMedGoogle Scholar
  116. 116.
    Osterloh JD, Pond SM, Grady S, et al. Serum formate concentrations in methanol intoxication as a criteria for hemodialysis. Ann Intern Med 1986: 104: 200–3PubMedGoogle Scholar
  117. 117.
    Jacobsen D, Sebastian CS, Barron SK, et al. Effects of 4-methylpyrazole, methanol/ethylene glycol antidote in healthy humans. J Emerg Med 1990; 8: 455–61PubMedGoogle Scholar
  118. 118.
    Jobard E, Harry P, Turcant A, et al. 4-Methylpyrazole and hemodialysis in ethylene glycol poisoning. Clin Toxicol 1996; 34: 373–7Google Scholar
  119. 119.
    Jacobsen D, McMartin K. 4-Methylpyrazole — present status [editorial]. Clin Toxicol 1996; 34: 379–81Google Scholar
  120. 120.
    Yen D, Tsai J, Wang LM, et al. The clinical experience of acute cyanide poisoning. Am J Emerg Med 1995; 13: 524–8PubMedGoogle Scholar
  121. 121.
    Kulling P. Hospital treatment of victims exposed to combustion products. Toxicol Lett 1992; 64–5: 283–9Google Scholar
  122. 122.
    Houeto P, Borron SW, Sandouk P, et al. Pharmacokinetics of hydroxocobalamin in smoke inhalation victims. Clin Toxicol 1996; 34: 397–404Google Scholar
  123. 123.
    Zerbe NF, Wagner BK. Use of vitamin B12 in the treatment and prevention of nitroprusside-induced cyanide toxicity. Crit Care Med 1993; 21: 465–7PubMedGoogle Scholar
  124. 124.
    Forsyth JC, Mueller PD, Becker CE, et al. Hydroxocobalamin as a cyanide antidote: safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. J Toxicol Clin Toxicol 1993; 31: 277–94PubMedGoogle Scholar
  125. 125.
    Kulig K. Cyanide antidotes and fire toxicology [editorial]. N Engl J Med 1991; 325: 1801–2PubMedGoogle Scholar
  126. 126.
    Baud FJ, Barriot P, Toffis V, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med 1991; 325: 1761–6PubMedGoogle Scholar
  127. 127.
    Buck ML, Reed MD. Use of nondepolarizing neuromuscular blocking agents in mechanically ventilated patients. Clin Pharm 1991; 10: 32–48PubMedGoogle Scholar
  128. 128.
    Somani SM, Dube SN. Physostigmine — an overview as pretreatment drug for organophosphate intoxication. Int J Clin Pharmacol Ther Toxicol 1989; 27: 367–87PubMedGoogle Scholar
  129. 129.
    Edwards CC. Fight to save FDA and Commissioner Edwards depends on House Commerce Committee commitment to Representative Moss’ consumer product bill in conference clash with Magnuson’s Senate bill. FDC Reports 1972; 34: 21Google Scholar
  130. 130.
    Buzello W. Postoperative care: antagonism of drugs used in anaesthesia: muscle relaxants. Acta Anaesthesiol Scand 1988; 32 Suppl. 87: 25–7Google Scholar
  131. 131.
    Wachtel RE. Comparison of anticholinesterases and their effects on acetylcholine-activated ion channels. Anesthesiology 1990; 72: 496–503PubMedGoogle Scholar
  132. 132.
    Rumack BH. Anticholinergic poisoning: treatment with physostigmine. Pediatrics 1973; 52: 449–51PubMedGoogle Scholar
  133. 133.
    Feldman MD. The syndrome of anticholinergic intoxication. Am Fam Physician 1986; 34: 113–6PubMedGoogle Scholar
  134. 134.
    Pentel P, Peterson CD. Asystole complicating physostigmine treatment of tricyclic antidepressant overdose. Ann Emerg Med 1980; 9: 588–90PubMedGoogle Scholar
  135. 135.
    Smolinske SC. Review of parenteral sulfite reactions. J Toxicol Clin Toxicol 1992; 20: 597–606Google Scholar
  136. 136.
    Ayerst Laboratories Inc. Protopam product information. New York, NY: Ayerst Laboratories Inc., 1991Google Scholar
  137. 137.
    Namba T, Nolte CR, Jackrel J, et al. Poisoning due to organophosphate insecticides. Am J Med 1971; 37: 475–92Google Scholar
  138. 138.
    Wadia RS, Amin RB. Fenthion poisoning [letter]. J Pediatr 1988; 113 (5): 950PubMedGoogle Scholar
  139. 139.
    De Kort WLAM, Kiestra SH, Sangster B. The use of atropine and oximes in organophosphate intoxications: a modified approach. Clin Toxicol 1988; 26: 199–208Google Scholar
  140. 140.
    Kurtz PH. Pralidoxime in the treatment of carbamate intoxication. Am J Emerg Med 1990; 8: 68–70PubMedGoogle Scholar
  141. 141.
    Leikin JB, Paloucek FP. Poisoning & toxicology handbook. Hudson, OH: Lexi-Comp, 1995: 1411–4Google Scholar
  142. 142.
    Taboulet P, Baud FJ, Bismuth C Clinical features and management of digitalis poisoning — rationale for immunotherapy. J Toxicol Clin Toxicol 1993; 31 (2): 247–60PubMedGoogle Scholar
  143. 143.
    Smith TW, Butler Jr VP, Haber E. Cardiac glycoside-specific antibodies in the treatment of digitalis intoxication. In: Krause R, Haber E, editors. Antibodies in human diagnosis and therapy. New York: Raven Books, 1977: 365–89Google Scholar
  144. 144.
    Hoffman BF, Bigger Jr JT. Digitalis and allied cardiac glycosides. In: Gilman AG, Rail TW, Nies AS, et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics. Elmsford, New York: Pergamon Press, 1990: 815–39Google Scholar
  145. 145.
    Baud FJ, Bismuth C, Pontal PG, et al. Time course of antidigoxin Fab fragments and plasma digitoxin concentrations in an acute digitalis intoxication. J Toxicol Clin Toxicol 1983; 19: 857–60Google Scholar
  146. 146.
    Hickey AR, Wenger TL, Carpenter VP, et al. Digoxin immune Fab therapy in the management of digitalis intoxication: safety and efficacy results of an observational surveillance study. J Am Coll Cardiol 1991; 17: 590–8PubMedGoogle Scholar
  147. 147.
    Woolf A. Revising the management of digitalis poisoning [editorial]. J Toxicol Clin Toxicol 1993; 31: 275–6PubMedGoogle Scholar
  148. 148.
    Mauskopf JA, Wenger TW. Cost-effectiveness analysis of the use of digoxin immune Fab (Ovine) for treatment of digoxin toxicity. Am J Cardiol 1991; 68: 1709–14PubMedGoogle Scholar
  149. 149.
    Centers for Disease Control/American Thoracic Society. Initial therapy for tuberculosis in the era of multidrug resistance: recommendations of the Advisory Council for the Elimination of Tuberculosis. MMWR 1993 May 21; 42: 1–8Google Scholar
  150. 150.
    Dutt AK, Stead WW. Tuberculosis. Clin Geriatr Med 1992; 8: 761–75PubMedGoogle Scholar
  151. 151.
    Dhennin C, Vesin L, Feauveaux J. Burns and the toxic effects of a derivative of hydrazine. Burns Incl Therm Inj 1988; 14: 130–4PubMedGoogle Scholar
  152. 152.
    Boehnert MT, Lewander WJ, Gaudreault P, et al. Advances in clinical toxicology. Pediatr Clin North Am 1985; 32: 193–211PubMedGoogle Scholar
  153. 153.
    Shah BR, Santucci K, Sinert R, et al. Acute isoniazid neurotoxicity in an urban hospital. Pediatrics 1995; 95: 700–4PubMedGoogle Scholar
  154. 154.
    Siefkin AD, Albertson TE, Corbett MG. Isoniazid overdose: pharmacokinetics and effects of oral charcoal in treatment. Hum Toxicol 1987; 6: 497–501PubMedGoogle Scholar
  155. 155.
    Yarbrough BE, Wood JP. Isoniazid overdose treated with highdose pyridoxine. Ann Emerg Med 1983; 12: 303–5PubMedGoogle Scholar
  156. 156.
    Sievers ML, Herrier RN. Treatment of acute isoniazid toxicity. Am J Hosp Pharm 1975; 32: 202–6PubMedGoogle Scholar
  157. 157.
    Vasile A, Goldberg R, Kornberg B. Pyridoxine toxicity: report of a case. J Am Osteopath Assoc 1984; 83: 790–1PubMedGoogle Scholar
  158. 158.
    Schaumburg H, Kaplan J, Windebank A, et al. Sensory neuropathy from pyridoxine abuse. N Engl J Med 1983; 309: 445–8PubMedGoogle Scholar
  159. 159.
    Dalton K, Dalton JY. Characteristics of pyridoxine overdose neuropathy syndrome. Acta Neurol Scand 1987; 76: 8–11PubMedGoogle Scholar
  160. 160.
    Kutt H, Brennan R, Dehejia H, et al. Diphenylhydantoin intoxication. Am Rev Respir Dis 1970; 101: 377–84PubMedGoogle Scholar
  161. 161.
    Glotzer DE, Freedberg KA, Bauchner H. Management of childhood lead poisoning: clinical impact and cost-effectiveness. Med Decis Making 1995; 15: 13–24PubMedGoogle Scholar
  162. 162.
    Mortensen ME, Walson PD. Chelation therapy for childhood lead poisoning. Clin Pediatr 1993; 32: 284–91Google Scholar
  163. 163.
    Glotzer DE. Management of childhood lead poisoning. Pediatr Ann 1994; 23: 606–15PubMedGoogle Scholar
  164. 164.
    Gelman CR, Rumack BH, editors. DRUGDEX Information System. Denver, Colorado: MICROMEDEX, Inc., (edition expired 31 August, 1996)Google Scholar
  165. 165.
    Clarkson TW. Mercury — an element of mystery [editorial]. N Engl J Med 1990; 323: 1137–8PubMedGoogle Scholar
  166. 166.
    Kosnett MJ. Unanswered question in metal chelation. J Toxicol Clin Toxicol 1992; 30: 529–47PubMedGoogle Scholar
  167. 167.
    Levy RS, Fisher M, Alter JN. Penicillamine: review and cutaneous manifestations. J Am Acad Dermatol 1983: 8: 548–88PubMedGoogle Scholar
  168. 168.
    Liebelt EL, Shannon MW. Oral chelators for childhood lead poisoning. Pediatr Ann 1994; 11: 616–9, 623–6Google Scholar
  169. 169.
    Watson WS, Hume R, Moore MR Oral absorption of lead and iron. Lancet 1980; 2 (8188): 236–7PubMedGoogle Scholar
  170. 170.
    Markowitz ME, Rosen JF, Bijur PE. Effects of iron deficiency on lead excretion in children with moderate lead intoxication. J Pediatr 1990; 116:360–4PubMedGoogle Scholar
  171. 171.
    Rodriguez LF, Smolik LM, Zbehlik AJ. Benzocaine-induced methemoglobinemia: report of a severe reaction and review of the literature. Ann Pharmacother 1994; 28: 643–9PubMedGoogle Scholar
  172. 172.
    Scott EM. Congenital methemoglobinemia due to DPNH-dis-phorase deficiency. In: Buetler E, editor. Hereditary disorders of erythrocyte metabolism. New York: Grune and Stratton, 1968: 102Google Scholar
  173. 173.
    Truman TL, Dallessio JJ, Weibley RE. Life-threatening Pyridium Plus intoxication: a case report. Pediatr Emerg Care 1994; 10: 225–8PubMedGoogle Scholar
  174. 174.
    Sills MR, Zinkham WH. Methylene blue-induced heinz body hemolytic anemia. Arch Pediatr Adolesc Med 1994; 148:306–10PubMedGoogle Scholar
  175. 175.
    Foxworth JW, Roberts JA, Mahmoud SE Acquired methemoglobinemia: a case report. Mo Med 1987; 84: 187–9PubMedGoogle Scholar
  176. 176.
    Hall AH, Rumack BH. Clinical toxicology of cyanide. Ann Emerg Med 1986; 15: 1067PubMedGoogle Scholar
  177. 177.
    Jones J, McMullen MJ, Dougherty J. Toxic smoke inhalation: cyanide poisoning in fire victims. Am J Emerg Med 1987; 5: 318–21Google Scholar
  178. 178.
    Johnson WS, Hall AH, Rumack BH. Cyanide poisoning successfully treated without ‘therapeutic methemoglobin levels’. Am J Emerg Med 1989; 7: 437–40PubMedGoogle Scholar
  179. 179.
    Hall AH, Kulig KW, Rumack BH. Toxic smoke inhalation [editorial]. Am J Emerg Med 1989; 7: 121–2PubMedGoogle Scholar
  180. 180.
    Kirk MA, Gerace R, Kulig KW. Cyanide and methemoglobin kinetics in smoke inhalation victims treated with the cyanide antidote kit. Ann Emerg Med 1993; 22: 1413–8PubMedGoogle Scholar
  181. 181.
    Mann KV, Travers JD. Succimer: an oral lead chelator. Clin Pharm 1991; 10:914–22PubMedGoogle Scholar
  182. 182.
    McNeil Consumer Products Company. Chemet product information. Fort Washington, PA: McNeil Consumer Products Company, 1994Google Scholar
  183. 183.
    Wegmann K. Chelation therapy to treat lead toxicity in children. Minn Med 1992; 75: 25–7PubMedGoogle Scholar
  184. 184.
    Goldfrank LR. Medical toxicology. JAMA 1992; 268: 375–6PubMedGoogle Scholar
  185. 185.
    Graziano JF, Siris ES, Lolacono N, et al. 2,3 dimercaptosuccinic acid as an antidote for lead intoxication. Clin Pharmacol Ther 1985; 37: 431–8PubMedGoogle Scholar
  186. 186.
    Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, et al. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 1995; 97: 23–38PubMedGoogle Scholar

Copyright information

© Adis International Limited 1997

Authors and Affiliations

  • Carol A. Bowden
    • 1
  • Edward P. Krenzelok
    • 2
  1. 1.Pharmacy DepartmentThe Methodist HospitalHoustonUSA
  2. 2.Pittsburgh Poison Center, Children’s Hospital of Pittsburgh, Schools of Pharmacy and MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations