Skip to main content
Log in

Effect of Haemodialysis on the Pharmacokinetics of Antineoplastic Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Since renal failure itself creates an immunocompromised situation, malignant tumours in haemodialysis patients are increasing due to the prolonged lifespan of these patients. In treating these patients with anticancer agents, dosage reduction is often recommended to avoid adverse drug reactions, particularly for drugs with extensive renal excretion. On the other hand, if an anticancer drug is removed significantly by haemodialysis, dosage increase would be required to ensure adequate therapeutic efficacy. We address in this review the clinical pharmacokinetic aspects of antineoplastic therapy, and the application of pharmacokinetic principles to the adjustment of dosage of anticancer agents in haemodialysis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Matas AJ, Simmons RL, Kjellstrand CM, et al. Increased incidence of malignancy during chronic renal failure. Lancet 1975; I: 883–6

    Article  Google Scholar 

  2. Miach PJ, Dawborn JK, Xipell J. Neoplasia in patients with chronic renal failure on long-term dialysis. Clin Nephrol 1976; 5: 101–4

    PubMed  CAS  Google Scholar 

  3. Sutherland GA, Glass J, Gabriel R. Increased incidence of malignancy in chronic renal failure. Nephron 1977; 18: 182–4

    Article  PubMed  CAS  Google Scholar 

  4. Sauer H, Fuger K, Blumenstein M. Modulation of cytotoxicity of cytostatic drugs by hemodialysis in vitro and in vivo. Cancer Treat Rev 1990; 17: 293–300

    Article  PubMed  CAS  Google Scholar 

  5. Gwilt PR, Perrier D. Plasma protein binding and distribution characteristics of drugs as indices of their hemodialysability. Clin Pharmacol Ther 1978; 24: 154–61

    PubMed  CAS  Google Scholar 

  6. Keller F, Wilms H, Schultze G, et al. Effect of plasma protein binding, volume of distribution and molecular weight on the fraction of drugs eliminated by hemodialysis. Clin Nephrol 1983; 19: 205–10

    Google Scholar 

  7. Lee CS, Marbury TC. Drug therapy in patients undergoing hemodialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet 1984; 9: 42–66

    Article  PubMed  CAS  Google Scholar 

  8. Winchester JF. Evolution of artificial organs/extracorporeal removal of drugs. Artif Organs 1986; 10: 316–23

    Article  PubMed  CAS  Google Scholar 

  9. Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents: VI. the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971; 93: 2325–7

    Article  PubMed  CAS  Google Scholar 

  10. Cresteil T, Monsarrat B, Alvinerie P, et al. Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res 1994; 54: 386–92

    PubMed  CAS  Google Scholar 

  11. Kumar GN, Walle UK, Walle T. Cytochrome P450 3A-mediated human liver microsomal taxol 6 alpha-hydroxylation. J Pharmacol Exp Ther 1994; 268: 1160–5

    PubMed  CAS  Google Scholar 

  12. Harris JW, Rahman A, Kim BR, et al. Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 1994; 54: 4026–35

    PubMed  CAS  Google Scholar 

  13. Wiernik PH, Schwartz EL, Stemmati JJ, et al. Phase I clinical and pharmacokinetic study of taxol. Cancer Res 1987; 47: 2486–93

    PubMed  CAS  Google Scholar 

  14. Longnecker SM, Donehower RC, Cates AE, et al. Highperformance liquid Chromatographic assay for taxol in human plasma and urine and pharmacokinetics in a phase I trial. Cancer Treat Rep 1987; 71: 53–9

    PubMed  CAS  Google Scholar 

  15. Woo MH, Gregornik D, Shearer PD, et al. Pharmacokinetics of paclitaxel in an anephric patient. Cancer Chemother Pharmacol 1999; 43: 92–6

    Article  PubMed  CAS  Google Scholar 

  16. Tornita M, Kurata H, Aoki Y, et al. Pharmacokinetics of paclitaxel and cisplatin in a hemodialysis patient with recurrent ovarian cancer. Anticancer Drugs 2001; 12: 485–7

    Article  Google Scholar 

  17. Watanabe M, Aoki Y, Tornita M, et al. Paclitaxel and carboplatin combination chemotherapy in a hemodialysis patient with advanced ovarian cancer. Gynecol Oncol 2002; 84: 335–8

    Article  PubMed  Google Scholar 

  18. Ohtsu T, Sasaki Y, Tamura T, et al. Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin Cancer Res 1995; 1: 599–606

    PubMed  CAS  Google Scholar 

  19. Huizing MT, Keung AC, Rosing H, et al. Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J Clin Oncol 1993; 11: 2127–35

    PubMed  CAS  Google Scholar 

  20. Balat O, Kudelka AP, Edwards CL, et al. A case report of paclitaxel administered to a patient with platinum-refractory ovarian cancer on long-term hemodialysis. Eur J Gynaecol Oncol 1996; 17: 232–3

    PubMed  CAS  Google Scholar 

  21. Jeyabalan N, Hirte HW, Moens F. Treatment of advanced ovarian carcinoma with carboplatin and paclitaxel in a patient with renal failure. Int J Gynecol Cancer 2000; 10: 463–8

    Article  PubMed  Google Scholar 

  22. De Conti RC, Toftness BR, Lange RC, et al. Clinical and pharmacological studies with cis-diamminedichloroplatinum (II). Cancer Res 1973; 33: 1310–5

    Google Scholar 

  23. Gouyette A, Lemoine R, Adhemar JP, et al. Kinetics of cisplatin in an anuric patient undergoing hemofiltration dialysis. Cancer Treat Rep 1981; 65: 665–8

    PubMed  CAS  Google Scholar 

  24. Tanabe N, Goto M, Morita H, et al. Pharmacokinetics of cisdiammine-dichlor-platin in a hemodialysis patient. Cancer Invest 1991; 9: 629–35

    Article  PubMed  CAS  Google Scholar 

  25. Ribrag V, Droz JP, Morizet J, et al. Test dose-guided administration of cisplatin in an anephric patient: a case report. Ann Oncol 1993; 4: 679–82

    PubMed  CAS  Google Scholar 

  26. Gorodetsky R, Vexler A, Bar-Khaim Y, et al. Plasma platinum elimination in a hemodialysis patient treated with cisplatin. Ther Drug Monit 1995; 17: 203–6

    Article  PubMed  CAS  Google Scholar 

  27. Ayabe H, Uchikawa T, Kimino K, et al. Pharmacokinetics of cisplatin and vindesine in a patient with chrnoic renal failure undergoing hemodialysis. Gan To Kagaku Ryoho 1989; 16: 3283–5

    PubMed  CAS  Google Scholar 

  28. Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989; 7: 1748–56

    PubMed  CAS  Google Scholar 

  29. Egorin MJ, Van Echo DA, Tipping SJ, et al. Pharmacokinetics and dosage reduction of cis-diammine (1,1-cyclobutanedicarboxylato) platinum in patients with impaired renal function. Cancer Res 1984; 44: 5432–8

    PubMed  CAS  Google Scholar 

  30. Gormley PE, Bull JM, LeRoy AF, et al. Kinetics of cisdichlorodiammineplatinum. Clin Pharmacol Ther 1979; 25: 351–7

    PubMed  CAS  Google Scholar 

  31. Takahashi K, Seki T, Nishikawa K, et al. Antitumor activity and toxicity of serum protein-bound platinum formed from cisplatin. Jpn J Cancer Res 1985; 76: 68–74

    PubMed  CAS  Google Scholar 

  32. Motzer RJ, Niedzwiecki D, Isaacs M, et al. Carboplatin-based chemotherapy with pharmacokinetic analysis for patients with hemodialysis-dependent renal insufficiency. Cancer Chemother Pharmacol 1990; 27: 234–8

    Article  PubMed  CAS  Google Scholar 

  33. Koren G, Weitzman S, Klein J, et al. Comparison of carboplatin pharmacokinetics between an anephric child and two children with normal renal function. Med Pediatr Oncol 1993; 21: 368–72

    Article  PubMed  CAS  Google Scholar 

  34. Chatelut E, Rostaing L, Gualano V, et al. Pharmacokinetics of carboplatin in a patient suffering from advanced ovarian carcinoma with hemodialysis-dependent renal insufficiency. Nephron 1994; 66: 157–61

    Article  PubMed  CAS  Google Scholar 

  35. Kurata H, Yoshiya N, Ikarashi H, et al. Pharmacokinetics of carboplatin in a patient under hemodialysis. Gan To Kagaku Ryoho 1994; 21: 547–50

    PubMed  CAS  Google Scholar 

  36. Yanagawa H, Takishita Y, Bando H, et al. Carboplatin-based chemotherapy in patients undergoing hemodialysis. Anticancer Res 1996; 16: 533–5

    PubMed  CAS  Google Scholar 

  37. Suzuki S, Koide M, Sakamoto S, et al. Pharmacokinetics of carboplatin and etoposide in a haemodialysis patient with Merkel-cell carcinoma. Nephrol Dial Transplant 1997; 12: 137–40

    Article  PubMed  CAS  Google Scholar 

  38. Obana T, Tanio Y, Takenaka M, et al. Chemotherapy for smallcell lung cancer (SCLC) patients with renal failure. Gan To Kagaku Ryoho 2002; 29: 435–8

    PubMed  Google Scholar 

  39. Harland SJ, Newell DR, Siddik ZH, et al. Pharmacokinetics of cis-diammine-1,1-cyclobutane dicarboxylate platinum (II) in patients with normal and impaired renal function. Cancer Res 1984; 44: 1693–7

    PubMed  CAS  Google Scholar 

  40. Sinkule JA. Etoposide: a semisynthetic epipodophyllotoxin: chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 1984; 4: 61–73

    PubMed  CAS  Google Scholar 

  41. O’Dwyer PJ, Leyland-Jones B, Alonso MT, et al. Etoposide (VP-16-213): current status of an active anticancer drug. N Engl J Med 1985; 312: 692–700

    Article  PubMed  Google Scholar 

  42. Allen LM, Creaven PJ. Comparison of the human pharmacokinetics of VM-26 and VP-16, two antineoplastic epipodophyllotoxin glucopyranoside derivatives. Eur J Cancer 1975; 11: 697–707

    PubMed  CAS  Google Scholar 

  43. Evans WE, Sinkule JA, Crom WR, et al. Pharmacokinetics of teniposide (VM26) and etoposide (VP16-213) in children with cancer. Cancer Chemother Pharmacol 1982; 7: 147–50

    Article  PubMed  CAS  Google Scholar 

  44. D’Incaici M, Rossi C, Zucchetti M, et al. Pharmacokinetics of etoposide in patients with abnormal renal and hepatic function. Cancer Res 1986; 46: 2566–71

    Google Scholar 

  45. Miyaoka K, Matsubara T, Matsumoto T, et al. Pharmacokinetic study of etoposide in aged patient with non Hodgkin lymphoma receiving hemodialysis. Gan To Kagaku Ryoho 1991; 18: 2325–8

    PubMed  CAS  Google Scholar 

  46. Holthuis JJ, Van de Vyver FL, van Oort WJ, et al. Pharmacokinetic evaluation of increasing dosages of etoposide in a chronic hemodialysis patient. Cancer Treat Rep 1985; 69: 1279–82

    PubMed  CAS  Google Scholar 

  47. Ono S, Miyazaki T, Nishikawa K, et al. Etoposide and cisplatin combination chemotherapy in a patient with small cell lung carcinoma under artificial hemodialysis. Gan To Kagaku Ryoho 1992; 19: 115–8

    PubMed  CAS  Google Scholar 

  48. English MW, Lowis SP, Peng B, et al. Pharmacokinetically guided dosing of carboplatin and etoposide during peritoneal dialysis and haemodialysis. Br J Cancer 1996; 73: 776–80

    Article  PubMed  CAS  Google Scholar 

  49. Chirstophidis N, Vajda FJ, Lucas I, et al. Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet 1978; 3: 330–6

    Article  PubMed  CAS  Google Scholar 

  50. Cohen JL, Irwin LE, Marshall GJ, et al. Clinical pharmacology of oral and intravenous 5-fluorouracil (NSC-19893). Cancer Chemother Rep 1974; 58: 723–31

    PubMed  CAS  Google Scholar 

  51. Heggie GD, Sommadossi JP, Cross DS, et al. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 1987; 47: 2203–6

    PubMed  CAS  Google Scholar 

  52. Rengelshausen J, Hull WE, Schwenger V, et al. Pharmacokinetics of 5-fluorouracil and its catabolites determined by 19F nuclear magnetic resonance spectroscopy for a patient on chronic hemodialysis. Am J Kidney Dis 2002; 39: E10

    Article  PubMed  Google Scholar 

  53. Molina R, Fabian C, Cowley Jr B. Use of charcoal hemoperfusion with sequential hemodialysis to reduce serum methotrexate levels in a patient with acute renal insufficiency. Am J Med 1987; 82: 350–2

    Article  PubMed  CAS  Google Scholar 

  54. Relling MV, Stapleton FB, Ochs J, et al. Removal of methotrexate, leucovorin, and their metabolites by combined hemodialysis and hemoperfusion. Cancer 1988; 62: 884–8

    Article  PubMed  CAS  Google Scholar 

  55. Gauthier E, Gimonet JF, Piedbois P, et al. Effectiveness of hemodialysis in a case of acute methotrexate poisoning. Presse Med 1990; 19: 2023–5

    PubMed  CAS  Google Scholar 

  56. Thomson AH, Daly M, Knepil J, et al. Methotrexate removal during haemodialysis in a patient with advanced laryngeal carcinoma. Cancer Chemother Pharmacol 1996; 38: 566–70

    Article  PubMed  CAS  Google Scholar 

  57. Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1979; 4: 380–94

    Article  PubMed  CAS  Google Scholar 

  58. Busse D, Busch FW, Bohnenstengel F. Dose escalation of cyclophosphamide in patients with breast cancer: consequences for pharmacokinetics and metabolism. J Clin Oncol 1997; 15: 1885–96

    PubMed  CAS  Google Scholar 

  59. Bagley CM, Bostick FW, De Vita VT. Clinical pharmacology of cyclophosphamide. Cancer Res 1973; 33: 226–33

    PubMed  Google Scholar 

  60. Chen TL, Kennedy MJ, Anderson LW. Nonlinear pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Drug Metab Dispos 1997; 25: 544–51

    PubMed  CAS  Google Scholar 

  61. Moore MJ Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1991; 20: 194–208

    Article  PubMed  CAS  Google Scholar 

  62. Bramwell V, Calvert RT, Edwards G. The disposition of cyclophosphamide in a group of myeloma patients. Cancer Chemother Pharmacol 1979; 3: 253–9

    Article  PubMed  CAS  Google Scholar 

  63. Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide and some of its metabolites. Eur J Clin Pharmacol 1981; 19: 443–51

    Article  PubMed  CAS  Google Scholar 

  64. Haubitz M, Bohnenstengel F, Brunkhorst R, et al. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int 2002; 61: 1495–501

    Article  PubMed  CAS  Google Scholar 

  65. Mouridsen HT, Jacobsen E. Pharmacokinetics of cyclophosphamide in renal failure. Acta Pharmacol Toxicol 1975; 36: 409–14

    Article  CAS  Google Scholar 

  66. Wang LH, Lee CS, Majeske BL, et al. Clearance and recovery calculations in hemodialysis: application to plasma, red blood cells, and dialysate measurements for cyclophosphamide. Clin Pharmacol Ther 1981; 29: 365–72

    Article  PubMed  CAS  Google Scholar 

  67. Milsted RAV, Jarman M. Hemodialysis during cyclophosphamide treatment. BMJ 1978; 1: 820–1

    Article  PubMed  CAS  Google Scholar 

  68. Perry JJ, Fleming RA, Rocco MV, et al. Administration and pharmacokinetics of high-dose cyclophosphamide with hemodialysis support for allogeneic bone marrow transplantation in acute leukemia and end-stage renal disease. Bone Marrow Transplant 1999; 23: 839–42

    Article  PubMed  CAS  Google Scholar 

  69. Bischoff ME, Blau W, Wagner T, et al. Total body irradiation and cyclophosphamide is a conditioning regimen for unrelated bone marrow transplantation in a patient with chronic myelogenous leukemia and renal failure on hemodialysis. Bone Marrow Transplant 1998; 22: 591–3

    Article  PubMed  CAS  Google Scholar 

  70. Carlson L, Goren MP, Bush DA, et al. Toxicity, pharmacokinetics, and in vitro hemodialysis clearance of ifosfamide and metabolites in an anephric pediatric patient with Wilms’ tumor. Cancer Chemother Pharmacol 1998; 41: 140–6

    Article  PubMed  CAS  Google Scholar 

  71. Skinner R, Sharkey IM, Pearson AD, et al. Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 1993; 11: 173–90

    PubMed  CAS  Google Scholar 

  72. Rossi R, Godde A, Kleinebrand A, et al. Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol 1994; 12: 159–65

    PubMed  CAS  Google Scholar 

  73. Seyffart G. Drugs in renal failure: dosing guidelines for frequently used drugs in end-stage renal disease and dialysis patients. Blood Purif 1985; 3: 140–68

    Article  PubMed  CAS  Google Scholar 

  74. Benner W, Aronoff GR, Morrison G, et al. Drug prescribing in renal failure: dosing guidelines for adults. Am J Kidney Dis 1983; 3: 155–93

    Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Tomita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, M., Aoki, Y. & Tanaka, K. Effect of Haemodialysis on the Pharmacokinetics of Antineoplastic Drugs. Clin Pharmacokinet 43, 515–527 (2004). https://doi.org/10.2165/00003088-200443080-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443080-00002

Keywords

Navigation