Skip to main content
Log in

Epigallocatechin, a Green Tea Polyphenol, Attenuates Myocardial Ischemia Reperfusion Injury in Rats

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Epigallocatechin-3-gallate (EGCG) is the most prominent catechin in green tea. EGCG has been shown to modulate numerous molecular targets in the setting of inflammation and cancer. These molecular targets have also been demonstrated to be important participants in reperfusion injury, hence this study examines the effects of EGCG in myocardial reperfusion injury. Male Wistar rats were subjected to myocardial ischemia (30 min) and reperfusion (up to 2 h). Rats were treated with EGCG (10 mg/kg intravenously) or with vehicle at the end of the ischemia period followed by a continuous infusion (EGCG 10 mg/kg/h) during the reperfusion period. In vehicle-treated rats, extensive myocardial injury was associated with tissue neutrophil infiltration as evaluated by myeloperoxidase activity, and elevated levels of plasma creatine phosphokinase. Vehicle-treated rats also demonstrated increased plasma levels of interleukin-6. These events were associated with cytosol degradation of inhibitor κB-α, activation of IκB kinase, phosphorylation of c-Jun, and subsequent activation of nuclear factor-κB and activator protein-1 in the infarcted heart. In vivo treatment with EGCG reduced myocardial damage and myeloperoxidase activity. Plasma IL-6 and creatine phosphokinase levels were decreased after EGCG administration. This beneficial effect of EGCG was associated with reduction of nuclear factor-κB and activator protein-1 DNA binding. The results of this study suggest that EGCG is beneficial for the treatment of reperfusion-induced myocardial damage by inhibition of the NF-κB and AP-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hearse DJ. (1991) Reperfusion-induced injury: a possible role for oxidant stress and its manipulation. Cardiovasc. Drugs Ther. 5 Suppl 2:225–35.

    Article  Google Scholar 

  2. Gross GJ, Farber NE, Hardman HF, Warltier DC. (1986) Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am. J. Physiol. 250:H372–7.

    CAS  PubMed  Google Scholar 

  3. Poltronieri R, Cevese A, Sbarbati A. (1992) Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience 3:155–60.

    CAS  PubMed  Google Scholar 

  4. Ferrari R et al. (1998) Oxidative stress during myocardial ischaemia and heart failure. Eur. Heart J. 19 Suppl B:B2–11.

    CAS  PubMed  Google Scholar 

  5. Grisham MB, Granger DN, Lefer DJ. (1998) Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Radic. Biol. Med. 25:404–33.

    Article  CAS  Google Scholar 

  6. Ambrosio G, Tritto I. (1999) Reperfusion injury: experimental evidence and clinical implications. Am. Heart J. 138:S69–75.

    Article  CAS  Google Scholar 

  7. Mukaida N, Okamato S, Ishikawa Y, Matsushima K. (1994) Molecular mechanisms of interleukin-8 gene expression. Leukoc. Biol. J. 56:554–8.

    Article  CAS  Google Scholar 

  8. DiDonato JA. Hayakawa M, Rothwarf DM, Zandi E, Karin M. (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–54.

    Article  CAS  Google Scholar 

  9. Mercurio F, Zhu H, Murray BW. (1997) IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–6.

    Article  CAS  Google Scholar 

  10. Karin M, Ben-Neriah Y. (2000) Phosphorylation meets ubiquitination:the control of NF-kB activity. Annu. Rev. Immunol. 18:621–63.

    Article  CAS  Google Scholar 

  11. Karin M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270:16483–6.

    Article  CAS  Google Scholar 

  12. Duffy SJ, Vita JA, Holbrook M, Swerdloff PL, Keaney JF, Jr. (2001) Effect of acute and chronic tea consumption on platelet aggregation in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 21:1084–9.

    Article  CAS  Google Scholar 

  13. Duffy SJ et al. (2001) Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104:151–6.

    Article  CAS  Google Scholar 

  14. Lin JK, Liang YC, Lin-Shiau SY. (1999) Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem. Pharmacol. 58:911–5.

    Article  CAS  Google Scholar 

  15. Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. (2000) Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3′-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem. Pharmacol. 59:357–67.

    Article  CAS  Google Scholar 

  16. Wang ZY et al. (1994) Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res. 54:3428–35.

    CAS  PubMed  Google Scholar 

  17. Serafini M, Ghiselli A, Ferro-Luzzi A. (1996) In vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr. 50:28–32.

    CAS  PubMed  Google Scholar 

  18. Dona M et al. (2003) Neutrophil restraint by green tea: Inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J. Immunol. 170:4335–41.

    Article  CAS  Google Scholar 

  19. Kang WS et al. (1999) Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate. Thromb. Res. 96:229–37.

    Article  CAS  Google Scholar 

  20. Levites Y, Amit T, Youdim MB, Mandel S. (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J. Biol. Chem. 277:30574–80.

    Article  CAS  Google Scholar 

  21. Levites Y, Youdim MB, Maor G, Mandel S. (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem. Pharmacol. 63:21–9.

    Article  CAS  Google Scholar 

  22. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst. 89:1881–6.

    Article  CAS  Google Scholar 

  23. Chan MM, Fong D, Ho CT, Huang HI. (1997) Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem. Pharmacol. 54:1281–6.

    Article  CAS  Google Scholar 

  24. Levites Y, Amit T, Mandel S, Youdim MB. (2003) Neuroprotection and neurorescue against Abeta toxicity and protein kinase C-dependent release of non-amyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallo-catechin-3-gallate. FASEB J. 17:952–4.

    Article  CAS  Google Scholar 

  25. Kim HS et al. (2004) EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Res. 24:747–53.

    CAS  PubMed  Google Scholar 

  26. Tedeschi E, Suzuki H, Menegazzi M. (2002) Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann. N.Y. Acad. Sci. 973:435–7.

    Article  CAS  Google Scholar 

  27. Chen PC et al. (2002) A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation 26:233–41.

    Article  CAS  Google Scholar 

  28. Zingarelli B, Cuzzocrea S, Zsengeller Z, Salzman AL, Szabo C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. Res. 36:205–15.

    Article  CAS  Google Scholar 

  29. Mizukami Y, Yoshioka K, Morimoto S, Yoshida K. (1997) A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion. J. Biol. Chem. 272:16657–62.

    Article  CAS  Google Scholar 

  30. Zingarelli B, Hake PW, Yang Z, O’Connor M, Denenberg A, Wong HR. (2002) Absence of inducible nitric oxide synthase modulates early reperfusion-induced NF-kappaB and AP-1 activation and enhances myocardial damage. FASEB J. 16:327–42.

    Article  CAS  Google Scholar 

  31. Nose P. (1993) Cytokines and reperfusion injury. J. Card. Surg. 8:305–8.

    Article  CAS  Google Scholar 

  32. Wisdom R. (1999) AP-1: one switch for many signals. Exp. Cell. Res. 253:180–5.

    Article  CAS  Google Scholar 

  33. Mitsos SE et al. (1986) Protective effects of N-2-mercaptopropionyl glycine against myocardial reperfusion injury after neutrophil depletion in the dog: evidence for the role of intracellular-derived free radicals. Circulation 73:1077–86.

    Article  CAS  Google Scholar 

  34. Duilio C et al. (2001) Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 280:H2649–57.

    Article  CAS  Google Scholar 

  35. Katiyar SK, Mukhtar H. (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress. J. Leukoc. Biol. 69:719–26.

    CAS  PubMed  Google Scholar 

  36. Katiyar SK, Matsui MS, Elmets CA, Mukhtar H. (1999) Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin. Photochem. Photobiol. 69:148–53.

    CAS  PubMed  Google Scholar 

  37. Zandi E, Karin M. (1999) Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol. Cell Biol. 19:4547–51.

    Article  CAS  Google Scholar 

  38. Yang F et al. (2001) The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol. Pharmacol. 60:528–33.

    Article  CAS  Google Scholar 

  39. Suzuki YJ, Packer L. (1993) Inhibition of NF-kappa B activation by vitamin E derivatives. Biochem. Biophys. Res. Commun. 193:277–83.

    Article  CAS  Google Scholar 

  40. Beauparlant P, Hiscott J. (1996) Biological and biochemical inhibitors of the NF-kappa B/Rel proteins and cytokine synthesis. Cytokine Growth Factor Rev. 7:175–90.

    Article  CAS  Google Scholar 

  41. L’Allemain G. (1999) Multiple actions of EGCG, the main component of green tea. Bull. Cancer 86:721–4.

    PubMed  Google Scholar 

  42. Zingarelli B et al. (2004) Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am. J. Physiol. Heart Circ. Physiol. 286:H1408–15.

    Article  CAS  Google Scholar 

  43. Stein B et al. (1993) Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12:3879–91.

    Article  CAS  Google Scholar 

  44. Clemens JA, Stephenson DT, Smalstig EB, Dixon EP, Little SP. (1997) Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats. Stroke 28:1073–80; discussion 1080–71.

    Article  CAS  Google Scholar 

  45. Zwacka RM et al. (1998) Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-kappaB activation. Nat. Med. 4:698–704.

    Article  CAS  Google Scholar 

  46. Menegazzi M et al. (2001) Anti-interferon gamma action of epigallocatechin-3-gallate mediated by specific inhibition of STAT1 activation. FASEB J 15:1309–11.

    Article  CAS  Google Scholar 

  47. Watson JL et al. (2004) The green tea polyphenol epigallocatechin gallate blocks epithelial barrier dysfunction provoked by IFNγ but not by IL-4. Am. J. Physiol. Gastrointest. Liver Physiol Jul 1[Epub ahead of print].

  48. Sesso H, Gaziano J, Buring J, Hennekens C. (1999) Coffee and tea intake and the risk of myocardial infarction. Am. J. Epidemiol. 149:162–7.

    Article  CAS  Google Scholar 

  49. Cheng TO. (2000) Tea is good for the heart. Arch. Intern. Med. 160:2397.

    Article  CAS  Google Scholar 

  50. Geleijnse JM, Launer LJ, Hofman A, Pols HAP, Witteman JCM. (1999) Tea flavonoids may protect against atherosclerosis: The Rotterdam study. Arch. Intern. Med. 159:2170–4.

    Article  CAS  Google Scholar 

  51. Hakim IA AM, Alduwaihy M, Al-Rubeaan K, Al-Nuaim AR, Al-Attas OS. (2003) Tea consumption and the prevalence of coronary heart disease in Saudi adults: results from a Saudi national study. Prev. Med. 36(1):64–70.

    Article  Google Scholar 

  52. Mukamal KJ, Maclure M, Muller JE, Sherwood JB, Mittleman MA. (2002) Tea consumption and mortality after acute myocardial infarction. Circulation 105:2476–81.

    Article  Google Scholar 

  53. Chow HH et al. (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin. Cancer Res. 9:3312–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH grant T 32 GM08478 (RA), RO1GM061723 (HRW), and NIH RO1HL 60730 (BZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Aneja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aneja, R., Hake, P.W., Burroughs, T.J. et al. Epigallocatechin, a Green Tea Polyphenol, Attenuates Myocardial Ischemia Reperfusion Injury in Rats. Mol Med 10, 55–62 (2004). https://doi.org/10.2119/2004-00032.Aneja

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2004-00032.Aneja

Keywords

Navigation