Skip to main content
Log in

Attenuated Hippocampus-Dependent Learning and Memory Decline in Transgenic TgAPPswe Fischer-344 Rats

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by increased β amyloid (Aβ) levels, extracellular Aβ deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Aβ and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Aβ-42 (21%), and Aβ-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Aβ deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Aβ levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Aβ-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Price DL, Sisodia SS. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Ann. Rev. Neurosci. 21:479–505.

    Article  CAS  Google Scholar 

  2. Seubert P et al. (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–7.

    Article  CAS  Google Scholar 

  3. Kamenetz F et al. (2003) APP processing and synaptic function. Neuron 37: 925–37.

    Article  CAS  Google Scholar 

  4. Rossor MN, Newman S, Frackowiak RS, Lantos P, Kennedy AM. (1993) Alzheimer’s disease families with amyloid precursor protein mutations. Ann N.Y. Acad. Sci. 695:198–202.

    Article  CAS  Google Scholar 

  5. Lannfelt L et al. (1993) Low frequency of the APP670/671 mutation in familial Alzheimer’s disease in Sweden. Neurosci. Lett. 153:85–7.

    Article  CAS  Google Scholar 

  6. Axelman K, Basun H, Winblad B, Lannfelt L. (1994) A large Swedish family with Alzheimer’s disease with a codon 670/671 amyloid precursor protein mutation: a clinical and genealogical investigation. Arch. Neurol. 51:1193–7.

    Article  CAS  Google Scholar 

  7. Hsiao K et al. (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102.

    Article  CAS  Google Scholar 

  8. Corcoran KA, Lu Y, Turner RS, Maren S. (2002) Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer’s disease. Learn. Mem. 9:243–52.

    Article  Google Scholar 

  9. Lalonde R et al. (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res. 956:36–44.

    Article  CAS  Google Scholar 

  10. Van Dam D et al. (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur. J. Neurosci. 17:388–96.

    Article  Google Scholar 

  11. deToledo-Morrell L, Geinisman Y, Morrell F. (1988) Age-dependent alterations in hippocampal synaptic plasticity: relation to memory disorders. Neurobiol. Aging 9:581–90.

    Article  CAS  Google Scholar 

  12. Ruiz-Opazo N, Xiang XH, Herrera VLM. (1997) Pressure-overload deinduction of human a2 Na,K-ATPase gene expression in transgenic rats. Hypertension 29: 606–12.

    Article  CAS  Google Scholar 

  13. Thor DH, Holloway WR. (1982) Social memory of the male laboratory rat. J. Comp. Physiol. Psychol. 96:1000–6.

    Article  Google Scholar 

  14. Sawyer TF, Hengehold AK, Perez WA. (1984) Chemosensory and hormonal mediation of social memory in male rats. Behav. Neurosci. 98:908–13.

    Article  CAS  Google Scholar 

  15. Bunsey M, Eichenbaum H. (1995) Selective damage to the hippocampal region blocks long-term retention of a natural and nonspatial stimulus-stimulus association. Hippocampus 5:546–56.

    Article  CAS  Google Scholar 

  16. Galef BG Jr, Kennett DJ, Stein M. (1985) Demonstrator influence on observer diet preference: effects of simple exposure and the presence of a demonstrator. Anim. Learn. Behav. 13:25–30.

    Article  Google Scholar 

  17. Galef BG Jr, Stein M. (1985) Demonstrator influence on observer diet preference: analyses of critical social interactions and olfactory signals. Anim. Learn. Behav. 13:31–8.

    Article  Google Scholar 

  18. Greenberg SM, Koo EH, Selkoe DJ, Qiu WQ, Kosik KS. (1994) Secreted β-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 91:7104–8.

    Article  CAS  Google Scholar 

  19. Johnson-Wood K et al. (1997) Amyloid precursor protein processing and Abeta 42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 94:1550–5.

    Article  CAS  Google Scholar 

  20. Duff K et al. (1996) Increased amyloid-β42-43 in brains of mice expressing mutant presenillin 1. Nature 383:710–3.

    Article  CAS  Google Scholar 

  21. Galef BG Jr. (1985) Socially-induced diet preference can partially reverse a LiCl-induced diet aversion. Anim. Learn. Behav. 13:415–8.

    Article  Google Scholar 

  22. Galef BG Jr, Mason JR, Preti G, Bean NJ. (1988) Carbon disulfide: a semichemical mediating socially-induced diet choice in rats. Physiol. Behav. 42: 119–24.

    Article  CAS  Google Scholar 

  23. Morris RGM. (1981) Spatial localization does not require the presence of local cues. Learn. Motivat. 12:239–60.

    Article  Google Scholar 

  24. Morris RGM, Garrud P, Rawlins JNP, O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–3.

    Article  CAS  Google Scholar 

  25. Morris RGM. (1984) Development of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11:47–60.

    Article  CAS  Google Scholar 

  26. Paylor R, Baskal L, Wehner JM. (1993) Behavioral dissociations between C57BL/6 and DBA/2 mice on learning and memory tasks: a hippocampal-dysfunction hypothesis. Psychobiology 21:11–26.

    Google Scholar 

  27. Brennan PA. (2001) The vomeronasal system. Cell. Mol. Life Sci. 58:546–55.

    Article  CAS  Google Scholar 

  28. Bannerman DM, Lemaire M, Beggs S, Rawlins JNP, Iversen SD. (2001) Cytotoxic lesions of the hippocampus increase social investigation but do not impair social-recognition memory. Exp. Brain Res. 138:100–9.

    Article  CAS  Google Scholar 

  29. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–9.

    Article  CAS  Google Scholar 

  30. Samuel W, Terry RD, DeTeresa R, Butters N, Masliah E. (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer’s dementia. Arch. Neurol. 51:772–8.

    Article  CAS  Google Scholar 

  31. Tamaoka A et al. (1995) Amyloid β protein 1-42/43 (Aβ1-42/43) in cerebellar diffuse plaques: enzyme-linked immunosorbent assay and immunocytochemical study. Brain Res. 679:151–6.

    Article  CAS  Google Scholar 

  32. Lue LF et al. (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155:853–62.

    Article  CAS  Google Scholar 

  33. McLean CA et al. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46:860–6.

    Article  CAS  Google Scholar 

  34. Koistinaho M et al. (2001) Specific spatial learning deficits become severe with age in β-amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. U.S.A. 98: 14675–80.

    Article  CAS  Google Scholar 

  35. Dodart JC et al. (2002) Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nature Neurosci. 5:452–7.

    Article  CAS  Google Scholar 

  36. Walsh DM et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535–9.

    Article  CAS  Google Scholar 

  37. Westerman MA et al. (2002) The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 22:1858–67.

    Article  CAS  Google Scholar 

  38. Anderson JJ et al. (1999) Reduced cerebrospinal fluid levels of α-secretase-cleaved amyloid precursor protein in aged rats: correlation with spatial memory deficits. Neuroscience 93:1409–20.

    Article  CAS  Google Scholar 

  39. Storey E, Cappai R. (1999) The amyloid precursor protein of Alzheimer’s disease and the A-beta peptide. Neuropathol. Appl. Neurobiol. 25:81–97.

    Article  CAS  Google Scholar 

  40. Bondolfi L et al. (2002) Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J. Neurosci. 22:515–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health, AG16770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L. M. Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Opazo, N., Kosik, K.S., Lopez, L.V. et al. Attenuated Hippocampus-Dependent Learning and Memory Decline in Transgenic TgAPPswe Fischer-344 Rats. Mol Med 10, 36–44 (2004). https://doi.org/10.2119/2003-00044.Herrera

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2003-00044.Herrera

Keywords

Navigation