Advertisement

Molecular Medicine

, Volume 23, Issue 1, pp 101–111 | Cite as

A New Gene Expression Signature for Triple-Negative Breast Cancer using Frozen Fresh Tissue before Neoadjuvant chemotherapy

  • Sandra K. Santuario-Facio
  • Servando Cardona-Huerta
  • Yadira X. Perez-Paramo
  • Victor Trevino
  • Francisco Hernandez-Cabrera
  • Augusto Rojas-Martinez
  • Grecia Uscanga-Perales
  • Jorge L. Martinez-Rodriguez
  • Lizeth Martinez-Jacobo
  • Gerardo Padilla-Rivas
  • Gerardo Muñoz-Maldonado
  • Juan Francisco Gonzalez-Guerrero
  • Javier Valero-Gomez
  • Ana L. Vazquez-Guerrero
  • Herminia G. Martinez-Rodriguez
  • Alvaro Barboza-Quintana
  • Oralia Barboza-Quintana
  • Raquel Garza-Guajardo
  • Rocio Ortiz-Lopez
Research Article

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer tumors. Comparisons between TNBC and non-triple-negative breast cancer (nTNBC) may help to differentiate key components involved in TNBC neoplasms. The purpose of the study was to analyze the expression profile of TNBC versus nTNBC tumors in a homogeneous population from northeastern Mexico. A prospective study of 50 patients (25 TNBC and 25 nTNBC) was conducted. Clinic parameters were equally distributed for TNBC and nTNBC: age at diagnosis (51 versus 47 years, p = 0.1), glucose level (107 mg/dl versus 104 mg/dl, p = 0.64), and body mass index (28 versus 29, p = 0.14). Core biopsies were collected for histopathological diagnosis and gene expression analysis. Total RNA was isolated and expression profiling was performed. Forty genes showed differential expression pattern in TNBC tumors. Among these, nine overexpressed genes (PRKX/PRKY, UGT8, HMGA1, LPIN1, HAPLN3, FAM171A1, BCL141A, FOXC1, and ANKRD11), and one underexpressed gene (ANX9) are involved in general metabolism. Based on this biochemical peculiarity and the overexpression of BCL11A and FOXC1 (involved in tumor growth and metastasis, respectively), we validated by quantitative polymerase chain reaction the expression profiles of seven genes out of the signature. In this report, a new gene signature for TNBC is proposed. To our knowledge, this is the first TNBC signature that describes genes involved in general metabolism. The findings may be pertinent for Mexican patients and require evaluation in other ethnic groups and populations.

Notes

Acknowledgments

This work was supported by CONA-CYT-Mexico through an approved grant (SALUD-CONACYT-2011-C01-162301). We are very grateful to the personnel of the Unidad de Genomica, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon for their technical assistance. SKSF and YXPP had scholarships from CONACYT (CVU nos. 369726 and 217104, respectively).

Supplementary material

10020_2017_2301101_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.33 MB.

References

  1. 1.
    Kreike B, et al. (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 9:R65.CrossRefGoogle Scholar
  2. 2.
    Rody A, et al. (2011) A clinically relevant gene signature in triple negative and basal-like breast cancer. Breast Cancer Res. 13:R97.CrossRefGoogle Scholar
  3. 3.
    Hudis CA, Gianni L. (2011) Triple-negative breast cancer: an unmet medical need. Oncologist. 16 Suppl 1:1–11.CrossRefGoogle Scholar
  4. 4.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 109:1721–8.CrossRefGoogle Scholar
  5. 5.
    Carey LA, et al. (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 295:2492–502.CrossRefGoogle Scholar
  6. 6.
    Barquera S, Campos-Nonato I, Hernandez-Barrera L, Pedroza A, Rivera-Dommarco JA. (2013) [Prevalence of obesity in Mexican adults 2000–2012]. Salud publica de Mexico. 55 Suppl 2:S151–60.CrossRefGoogle Scholar
  7. 7.
    de la Vara-Salazar E, Suarez-Lopez L, Angeles-Llerenas A, Torres-Mejia G, Lazcano-Ponce E. (2011) [Breast cancer mortality trends in Mexico, 1980–2009]. Salud publica de Mexico. 53:385393.CrossRefGoogle Scholar
  8. 8.
    Knaul FM, et al. (2009) [Breast cancer in Mexico: an urgent priority]. Salud publica de Mexico. 51 Suppl 2:s335–44.CrossRefGoogle Scholar
  9. 9.
    Swisher A, et al. (2015) Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile. Support Care Cancer. 23:2995–3003.CrossRefGoogle Scholar
  10. 10.
    Coughlin SS, Smith SA. (2015) The Insulin-like Growth Factor Axis, Adipokines, Physical Activity, and Obesity in Relation to Breast Cancer Incidence and Recurrence. Cancer Clin. Oncol. 4:24–31.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Seo BR, et al. (2015) Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci. Transl. Med. 7:301ra130.CrossRefGoogle Scholar
  12. 12.
    van de Vijver MJ, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347:1999–2009.CrossRefGoogle Scholar
  13. 13.
    Paik S, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351:2817–26.CrossRefGoogle Scholar
  14. 14.
    Komatsu M, et al. (2013) Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis. Int. J. Oncol. 42:478–506.CrossRefGoogle Scholar
  15. 15.
    Al-Ejeh F, et al. (2014) Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis. 3:e100.CrossRefGoogle Scholar
  16. 16.
    Khaled WT, et al. (2015) BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat. Commun. 6:5987.CrossRefGoogle Scholar
  17. 17.
    Cascione L, et al. (2013) Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PloS One. 8:e55910.CrossRefGoogle Scholar
  18. 18.
    Lehmann BD, et al. (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121:2750–67.CrossRefGoogle Scholar
  19. 19.
    Hennessy BT, et al. (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 69:4116–24.CrossRefGoogle Scholar
  20. 20.
    Karn T, et al. (2011) Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures. PloS One. 6:e28403.CrossRefGoogle Scholar
  21. 21.
    Tchou J, et al. (2012) Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med. Genomics. 5:39.CrossRefGoogle Scholar
  22. 22.
    Parker JS, et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27:1160–7.CrossRefGoogle Scholar
  23. 23.
    Benjamini Y, Hochberg Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol. 57:289–300.Google Scholar
  24. 24.
    R Core Team. (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  25. 25.
    Aguirre-Gamboa R, et al. (2013) SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis. PloS One. 8:e74250.CrossRefGoogle Scholar
  26. 26.
    Warde-Farley D, et al. (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38:W214–20.CrossRefGoogle Scholar
  27. 27.
    Lara-Medina F, et al. (2011) Triple-negative breast cancer in Hispanic patients: high prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer. 117:3658–69.CrossRefGoogle Scholar
  28. 28.
    Tkocz D, et al. (2012) BRCA1 and GATA3 core-press FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene. 31:3667–78.CrossRefGoogle Scholar
  29. 29.
    Smid M, et al. (2006) Genes associated with breast cancer metastatic to bone. J. Clin. Oncol. 24:2261–7.CrossRefGoogle Scholar
  30. 30.
    Chiefari E, et al. (2013) A polymorphism of HMGA1 is associated with increased risk of metabolic syndrome and related components. Sci. Rep. 3:1491.CrossRefGoogle Scholar
  31. 31.
    Foti D, et al. (2005) Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat. Med. 11:765–73.CrossRefGoogle Scholar
  32. 32.
    Pullinger CR, et al. (2014) Evidence that an HMGA1 gene variant associates with type 2 diabetes, body mass index, and high-density lipoprotein cholesterol in a Hispanic-American population. Metab. Syndr. Relat. Disord. 12:25–30.CrossRefGoogle Scholar
  33. 33.
    Shah SN, et al. (2013) HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. PloS One. 8:e63419.CrossRefGoogle Scholar
  34. 34.
    He J, et al. (2017) Lipin-1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple-negative breast cancer cell survival. FASEB J. 31:1–12.CrossRefGoogle Scholar
  35. 35.
    Sprong H, et al. (1998) UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273:25880–88.CrossRefGoogle Scholar
  36. 36.
    Owczarek TB, et al. (2013) Galactosylceramide affects tumorigenic and metastatic properties of breast cancer cells as an anti-apoptotic molecule. PloS One. 8:e84191.CrossRefGoogle Scholar
  37. 37.
    Schiffmann S, et al. (2009) Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis. 30:745–52.CrossRefGoogle Scholar
  38. 38.
    Murphy NC, et al. (2010) Loss of STARD10 expression identifies a group of poor prognosis breast cancers independent of HER2/Neu and triple negative status. Int. J. Cancer. 126:1445–53.PubMedGoogle Scholar
  39. 39.
    Eldai H, et al. (2013) Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner. PloS One. 8:e76251.CrossRefGoogle Scholar
  40. 40.
    Rahim B, O’Regan R. (2017) AR Signaling in Breast Cancer. Cancers. 9:21.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Sandra K. Santuario-Facio
    • 1
    • 7
  • Servando Cardona-Huerta
    • 2
  • Yadira X. Perez-Paramo
    • 3
  • Victor Trevino
    • 4
  • Francisco Hernandez-Cabrera
    • 5
  • Augusto Rojas-Martinez
    • 1
    • 7
  • Grecia Uscanga-Perales
    • 6
  • Jorge L. Martinez-Rodriguez
    • 2
    • 8
  • Lizeth Martinez-Jacobo
    • 6
  • Gerardo Padilla-Rivas
    • 6
  • Gerardo Muñoz-Maldonado
    • 9
  • Juan Francisco Gonzalez-Guerrero
    • 8
  • Javier Valero-Gomez
    • 2
  • Ana L. Vazquez-Guerrero
    • 2
  • Herminia G. Martinez-Rodriguez
    • 6
  • Alvaro Barboza-Quintana
    • 2
  • Oralia Barboza-Quintana
    • 10
  • Raquel Garza-Guajardo
    • 10
  • Rocio Ortiz-Lopez
    • 1
    • 7
  1. 1.Centro de Investigación y Desarrollo en Ciencias de la SaludUniversidad Autonoma de Nuevo LeonMonterreyMexico
  2. 2.Tecnologico de MonterreyHospital San Jose, Centro de Cancer de MamaMonterreyMexico
  3. 3.Pharmaceutical Sciences Department, College of PharmacyWashington State UniversitySpokaneUSA
  4. 4.Tecnológico de MonterreyEscuela Nacional de Medicina, Grupo de Investigacion en BioinformaticaMonterreyMexico
  5. 5.Facultad de Ciencias Fisico Matematicas, Centro Investigación en Ciencias Físico MatemáticasUniversidad Autonoma de Nuevo LeonMonterreyMexico
  6. 6.Facultad de Medicina, Departamento de Bioquimica y Medicina MolecularUniversidad Autonoma de Nuevo LeonMonterreyMexico
  7. 7.Tecnologico de MonterreyEscuela Nacional de MedicinaMonterreyMexico
  8. 8.Centro Universitario Contra el Cancer, Servicio de OncologiaUniversidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio GonzalezMonterreyMexico
  9. 9.Servicio de Cirugia GeneralUniversidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio GonzalezMonterreyMexico
  10. 10.Servicio de Anatomia Patologica y CitopatologiaUniversidad Autonoma de Nuevo Leon, Hospital Universitario Dr. Jose Eleuterio GonzalezMonterreyMexico

Personalised recommendations