Molecular Medicine

, Volume 21, Issue 1, pp 861–872 | Cite as

Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges

  • Wan I. Wan-Ibrahim
  • Vivek A. Singh
  • Onn H. Hashim
  • Puteri S. Abdul-Rahman
Review Article


Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed.



This work was funded by the Ministry of Higher Education, Malaysia (HIR-MOHE H-20001-E000009) and research grants from the University of Malaya, Kuala Lumpur (PS247/2010B and RG11/09AFR).


  1. 1.
    Malawer MM, Helman LJ, O’Sullivan B. (1998) Sarcomas of Bone. In: DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. DeVita VT Jr, Lawrence TS, Rosenberg SA (eds.) Lippincott Williams & Wilkins, Philadelphia, pp. 1794–893.Google Scholar
  2. 2.
    Jin S, et al. (2007) 2-D DIGE and MALDI-TOF-MS analysis of the serum proteome in human osteosarcoma. Proteomics Clin. Appl. 1:272–85.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Fujiwara T, et al. (2014) MicroRNAs in soft tissue sarcomas: overview of the accumulating evidence and importance as novel biomarkers. Biomed. Res. Intern. 2014:592868.Google Scholar
  4. 4.
    Robbins SL, Kumar V. (1987) Basic Pathology. Philadelphia: WB Saunders.Google Scholar
  5. 5.
    Kaplan MM, Righetti A. (1970) Induction of rat liver alkaline phosphatase: the mechanism of the serum elevation in bile duct obstruction. J. Clin. Invest. 49:508–16.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Moss DW. (1982) Alkaline phosphatase isoenzymes. Clin. Chem. 28:2007–16.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Atkinson AJ, et al. (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69:89–95.CrossRefGoogle Scholar
  8. 8.
    Baron JA. (2012) Screening for cancer with molecular markers: progress comes with potential problems. Nat. Rev. Cancer. 12:368–71.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kulasingam V, Diamandis EP. (2008) Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5:588–99.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fuzery A, Levin J, Chan M, Chan D. (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteomics. 10:13.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Stephen S, Sarojini S, Milinovikj N. (2013) Ovarian cancer biomarkers: current trends in translational research for early detection. Transl. Med. 3:e115.CrossRefGoogle Scholar
  12. 12.
    Ludwig JA, Weinstein JN. (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer. 5:845–56.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Yadav SP. (2007) The wholeness in suffix -omics, -omes, and the word om. J. Biomol. Tech. 18:277.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tainsky MA. (2009) Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim. Biophys. Acta. 1796:176–93.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ong M, et al. (2014) Validation and utilisation of high-coverage next-generation sequencing to deliver the pharmacological audit trail. Br. J. Cancer. 111:828–36.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. (2009) An operational definition of epigenetics. Genes Dev. 23:781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Li J, Jin H, Wang X. (2014) Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN Gastroenterol. 2014:464015.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bock C. (2009) Epigenetic biomarker development. EpiGenomics. 1:99–110.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zuo T, Tycko B, Liu TM, Lin JJ, Huang TH. (2009) Methods in DNA methylation profiling. EpiGenomics. 1:331–45.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Qin LX, et al. (2006) Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. BMC Bioinformatics. 7:23.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wasinger VC, et al. (1995) Progress with geneproduct mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 16:1090–4.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Baak JP, et al. (2003) Genomics and proteomics in cancer. Eur. J. Cancer. 39:1199–215.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Jensen ON. (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8:33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tomonaga T, et al. (2004) Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin. Cancer Res. 10:2007–14.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Duan X, Yarmush D, Berthiaume F, Jayaraman A, Yarmush ML. (2005) Immunodepletion of albumin for two-dimensional gel detection of new mouse acute-phase protein and other plasma proteins. Proteomics. 5:3991–4000.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Granger J, Siddiqui J, Copeland S, Remick D. (2005) Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics. 5:4713–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Seibert V, Ebert MP, Buschmann T. (2005) Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief. Funct. Genomic Proteomic. 4:16–26.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Veenstra TD, et al. (2005) Biomarkers: mining the biofluid proteome. Mol. Cell. Proteomics. 4:409–18.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Abdul-Rahman PS, Lim BK, Hashim OH. (2007) Expression of high-abundance proteins in sera of patients with endometrial and cervical cancers: analysis using 2-DE with silver staining and lectin detection methods. Electrophoresis. 28:1989–96.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jayapalan JJ, Ng KL, Razack AH, Hashim OH. (2012) Identification of potential complementary serum biomarkers to differentiate prostate cancer from benign prostatic hyperplasia using gel- and lectin-based proteomics analyses. Electrophoresis. 33:1855–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jayapalan JJ, Ng KL, Shuib AS, Razack AH, Hashim OH. (2013) Urine of patients with early prostate cancer contains lower levels of light chain fragments of inter-alpha-trypsin inhibitor and saposin B but increased expression of an inter-alpha-trypsin inhibitor heavy chain 4 fragment. Electrophoresis. 34:1663–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Seriramalu R, et al. (2010) Application of champedak mannose-binding lectin in the glycoproteomic profiling of serum samples unmasks reduced expression of alpha-2 macroglobulin and complement factor B in patients with nasopharyngeal carcinoma. Electrophoresis. 31:2388–95.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Goldman R, et al. (2007) Candidate markers for the detection of hepatocellular carcinoma in low-molecular weight fraction of serum. Carcinogenesis. 28:2149–53.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Petricoin EF, et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 359:572–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tirumalai RS, et al. (2003) Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics. 2:1096–103.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hutchens TW, Yip TT. (1993) New desorption strategies for the mass-spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 7:576–80.CrossRefGoogle Scholar
  37. 37.
    Issaq HJ, Veenstra TD, Conrads TP, Felschow D. (2002) The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292:587–92.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yang SY, et al. (2005) Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer. 5:83.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tolson J, et al. (2004) Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab. Invest. 84:845–56.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Takano M, et al. (2010) Identification of potential serum markers for endometrial cancer using protein expression profiling. J. Cancer Res. Clin. Oncol. 136:475–81.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Qiu FM, et al. (2009) Mining novel biomarkers for prognosis of gastric cancer with serum proteomics. J. Exp. Clin. Cancer Res. 28:126.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nilsen MM, et al. (2011) From SELDI-TOF MS to protein identification by on-chip elution. J. Proteomics. 74:2995–8.CrossRefGoogle Scholar
  43. 43.
    Ross PL, et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics. 3:1154–69.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lange V, Picotti P, Domon B, Aebersold R. (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4:222.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wang WX, et al. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75:4818–26.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Parviainen VI, Joenvaara S, Tohmola N, Renkonen R. (2013) Label-free mass spectrometry proteome quantification of human embryonic kidney cells following 24 hours of sialic acid overproduction. Proteome Sci. 11:38.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877:1229–39.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Anderson L, Hunter CL. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteomics. 5:573–88.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kuzyk MA, et al. (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol. Cell. Proteomics. 8:1860–77.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sung HJ, et al. (2012) Large-scale isotype-specific quantification of serum amyloid A 1/2 by multiple reaction monitoring in crude sera. J. Proteomics. 75:2170–80.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Yuan J, Chen L, Chen X, Sun W, Zhou X. (2012) Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma. J. Int. Med. Res. 40:2090–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gebhardt MC, Springfield D, Neff JR. (2008) Sarcomas of bone. In: Abeloffs Clinical Oncology. Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, Mckenna WG (eds.) Churchill Livingstone, Philadelphia.Google Scholar
  53. 53.
    Reilly CA Jr, Pritchard DJ, Biskis BO, Finkel MP. (1972) Immunologic evidence suggesting a viral etiology of human osteosarcoma. Cancer. 30:603–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Czitrom AA, Pritzker KP, Langer F, Gross AE, Luk SC. (1976) Virus-induced osteosarcoma in rats. J. Bone Joint Surg. Am. 58:303–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Olson HM, Capen CC. (1977) Virus-induced animal model of osteosarcoma in the rat: morphologic and biochemical studies. Am. J. Pathol. 86:437–58.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Fuchs B, Pritchard DJ. (2002) Etiology of osteosarcoma. Clin. Orthop. Relat. Res. 397:40–52.CrossRefGoogle Scholar
  57. 57.
    Bassin EB, Wypij D, Davis RB, Mittleman MA. (2006) Age-specific fluoride exposure in drinking water and osteosarcoma (United States). Cancer Causes Control. 17:421–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Gougelet A, et al. (2011) Micro-RNA profiles in osteosarcoma as a predictive tool for ifosfamide response. Int. J. Cancer. 129:680–90.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Jones KB, et al. (2012) miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 72:1865–77.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Man TK, et al. (2005) Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res. 65:8142–50.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mintz MB, et al. (2005) An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res. 65:1748–54.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Uejima D, et al. (2011) Involvement of cancer biomarker C7orf24 in the growth of human osteosarcoma. Anticancer Res. 31:1297–305.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang ZG, Cai HK, Lin LJ, Tang MJ, Cai HQ. (2014) Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr. Blood Cancer. 61:206–10.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Xiong W, Niu PY, Zhu WT, Chen J. (2009) Tenascin-C as a prognostic biomarker in osteosarcoma? Chin. Med. J. (Engl). 122:2737–43.Google Scholar
  65. 65.
    Tanaka M, et al. (2000) Clinical significance of tenascin-C expression in osteosarcoma: tenascin-C promotes distant metastases of osteosarcoma. Int. J. Mol. Med. 5:505–10.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Folio C, et al. (2009) Proteomic analysis of chemonaive pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets. J. Proteome. Res. 8:3882–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hua Y, et al. (2011) Plasma membrane proteomic analysis of human osteosarcoma and osteoblastic cells: revealing NDRG1 as a marker for osteosarcoma. Tumour. Biol. 32:1013–21.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Jin S, et al. (2012) Increased expression of serum gelsolin in patients with osteosarcoma. Chin. Med. J. (Engl). 125:262–9.Google Scholar
  69. 69.
    Kikuta K, et al. (2010) Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics. Proteomics Clin. Appl. 4:560–7.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Li Y, et al. (2010) Comparative proteomics analysis of human osteosarcomas and benign tumor of bone. Cancer Genet. Cytogenet. 198:97–106.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Li Y, et al. (2006) Identification of a plasma proteomic signature to distinguish pediatric osteosarcoma from benign osteochondroma. Proteomics. 6:3426–35.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Li G, et al. (2009) An integrative multi-platform analysis for discovering biomarkers of osteosarcoma. BMC Cancer. 9:150.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Li Y, et al. (2011) Plasma proteome predicts chemotherapy response in osteosarcoma patients. Oncol. Rep. 25:303–14.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Malle E, Sodin-Semrl S, Kovacevic A. (2009) Serum amyloid A: An acute-phase protein involved in tumour pathogenesis. Cell. Mol. Life. Sci. 66:9–26.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ow YLP, Green DR, Hao Z, Mak TW. (2008) Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell. Biol. 9:532–42.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Angst E, et al. (2006) Cellular differentiation determines the expression of the hypoxia-inducible protein NDRG1 in pancreatic cancer. Br. J. Cancer. 95:307–13.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Peskin AV, et al. (2007) The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282:11885–92.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Cope JU. (2000) A viral etiology for Ewing’s sarcoma. Med. Hypotheses. 55:369–72.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cavazzana AO, Miser JS, Jefferson J, Triche TJ. (1987) Experimental evidence for a neural origin of Ewing’s sarcoma of bone. Am. J. Pathol. 127:507–18.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Yu M, Wan YF, Zou QH. (2012) Cell-free circulating mitochondrial DNA in the serum: a potential non-invasive biomarker for Ewing’s sarcoma. Arch. Med. Res. 43:389–94.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bennani-Baiti IM, et al. (2010) Intercohort gene expression co-analysis reveals chemokine receptors as prognostic indicators in Ewing’s sarcoma. Clin. Cancer Res. 16:3769–78.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nakatani F, et al. (2012) miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J. Pathol. 226:796–805.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ohali A, et al. (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene. 23:8997–9006.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kikuta K, et al. (2009) Nucleophosmin as a candidate prognostic biomarker of Ewing’s sarcoma revealed by proteomics. Clin. Cancer Res. 15:2885–94.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bertoni F, Bacchini P, Hogendoorn PCW. (2002) Chondrosarcoma. In: World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Fletcher CDM, Unni KK, Martens F (eds.). IARC Press, Lyon, France.Google Scholar
  86. 86.
    Kerr DA, et al. (2013) Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am. J. Surg. Pathol. 37:787–95.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hogendoorn PCW, et al. (2010) Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21:v204–13.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Bertoni F, Present D, Enneking WF. (1985) Giant-cell tumor of bone with pulmonary metastases. J. Bone Joint Surg. Am. 67:890–900.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Zheng MH, et al. (1994) Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone: possible involvement in osteoclast-like cell migration. Am. J. Pathol. 145:1095–104.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Werner M. (2006) Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int. Orthop. 30:484–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Campanacci M, Baldini N, Boriani S, Sudanese A. (1987) Giant-cell tumor of bone. J. Bone Joint Surg. Am. 69:106–14.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Lee C-H, et al. (2008) Gene expression profiling identifies p63 as a diagnostic marker for giant cell tumor of the bone. Mod. Pathol. 21:531–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Melino G. (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ. 18:1487–99.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Conti A, et al. (2011) Identification of potential biomarkers for giant cell tumor of bone using comparative proteomics analysis. Am. J. Pathol. 178:88–97.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Koomen JM, et al. (2008) Proteomic contributions to personalized cancer care. Mol. Cell Proteomics. 7:1780–94.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Negm RS, Verma M, Srivastava S. (2002) The promise of biomarkers in cancer screening and detection. Trends Mol. Med. 8:288–93.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Srinivas PR, Verma M, Zhao Y, Srivastava S. (2002) Proteomics for cancer biomarker discovery. Clin. Chem. 48:1160–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Mayeux R. (2004) Biomarkers: potential uses and limitations. NeuroRx. 1:182–8.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Marguiles AG, Klimberg VS, Bhattacharrya S, Gaddy D, Suva LJ. (2006) Genomics and proteomics of bone cancer. Clin. Cancer Res. 12: 6217s–21s.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Cho WC. (2010) MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int. J. Biochem. Cell. Biol. 42:1273–81.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Aebersold R, et al. (2005) Perspective: a program to improve protein biomarker discovery for cancer. J. Proteome Res. 4:1104–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sabel MS, Liu Y, Lubman DM. (2011) Proteomics in melanoma biomarker discovery: great potential, many obstacles. Int. J. Proteomics. 2011:181890.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Nicholson JK, Lindon JC, Holmes E. (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29:1181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Zhang A, Sun H, Wang P, Han Y, Wang X. (2012) Modern analytical techniques in metabolomics analysis. Analyst. 137:293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Griffin JL. (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos. Trans. R Soc. Lond. B Biol. Sci. 359:857–71.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. (2013) Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem. 20:257–71.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bro R, et al. (2015) Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics. 1–5.Google Scholar
  108. 108.
    Poste G. (2011) Bring on the biomarkers. Nature. 469:156–7.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Diamandis EP. (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J. Natl. Cancer Inst. 96:353–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Dalton WS, Friend SH. (2006) Cancer biomarkers: an invitation to the table. Science. 312:1165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Baggerly KA, Morris JS, Edmonson SR, Coombes KR. (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J. Natl. Cancer Inst. 97:307–9.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Baggerly KA, Morris JS, Coombes KR. (2004) Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 20:777–85.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Diamandis EP. (2012) The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Med. 10:87.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Reich ES. (2011) Cancer trial errors revealed. Nature. 469:139–40.CrossRefGoogle Scholar
  115. 115.
    Diamandis EP. (2010) Cancer biomarkers: can we turn recent failures into success? J. Natl. Cancer Inst. 102:1462–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hanash SM. (2011) Why have protein biomarkers not reached the clinic? Genome Med. 3:66.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Pepe MS, Feng ZD, Janes H, Bossuyt PM, Potter JD. (2008) Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J. Natl. Cancer Inst. 100:1432–8.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Drucker E, Krapfenbauer K. (2013) Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J. 4:7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Wan I. Wan-Ibrahim
    • 1
  • Vivek A. Singh
    • 2
  • Onn H. Hashim
    • 1
    • 3
  • Puteri S. Abdul-Rahman
    • 1
    • 3
  1. 1.Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Orthopaedic Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.University of Malaya Centre of Proteomics Research (UMCPR), University of MalayaKuala LumpurMalaysia

Personalised recommendations