Molecular Medicine

, Volume 21, Issue 1, pp 782–791 | Cite as

Human Leukocyte Antigen-G (HLA-G) Expression in Cancers: Roles in Immune Evasion, Metastasis and Target for Therapy

  • Aifen Lin
  • Wei-Hua Yan
Review Article


Aberrant induction of human leukocyte antigen-G (HLA-G) expression has been observed in various malignancies and is strongly associated with tumor immune escape, metastasis and poor prognosis. To date, great achievements have been made in understanding the underlying mechanisms of HLA-G involved in tumor progression. HLA-G could lead to tumor evasion by inhibition of immune cell cytolysis, differentiation and proliferation and inhibition of cytokine production, induction of immune cell apoptosis, generation of regulatory cells and expansion of myeloid-derived suppressive cells and by impairment of chemotaxis. Moreover, HLA-G could arm tumor cells with a higher invasive and metastatic potential with the upregulation of tumor-promoting factor expression such as matrix metalloproteinases (MMPs), indicating that ectopic HLA-G expression could render multiple effects during the progression of malignancies. In this review, we summarized the mechanisms of HLA-G involved in promoting tumor cell immune escaping, metastasis and disease progression. Special attention will be paid to its significance as an attractive therapeutic target in cancers.



This work was supported by grants from the National Natural Science Foundation of China (31170879, 31370920, 81372247), the Natural Science Foundation of Zhejiang Province (LR13H160001) and the Zhejiang Provincial program for the cultivation of high-level innovative health talents.


  1. 1.
    Bruttel VS, Wischhusen J. (2014) Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol. 5:360.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gajewski TF, Schreiber H, Fu YX. (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14:1014–22.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. (2013) Molecular pathways: human leukocyte antigen G (HLA-G). Clin. Cancer Res. 19:5564–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kochan G, Escors D, Breckpot K, Guerrero-Setas D. (2013) Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunology. 2:e26491.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    González A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E. (2012) The immunosuppressive molecule HLA-G and its clinical implications. Crit. Rev. Clin. Lab. Sci. 49:63–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Rizzo R, et al. (2013) Matrix metalloproteinase-2 (MMP-2) generates soluble HLA-G1 by cell surface proteolytic shedding. Mol. Cell. Biochem. 381:243–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science. 248:220–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Menier C, Rabreau M, Challier JC, Le Discorde M, Carosella ED, Rouas-Freiss N. (2004) Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis. Blood. 104:3153–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Le Discorde M, Moreau P, Sabatier P, Legeais JM, Carosella ED. (2003) Expression of HLA-G in human cornea, an immune-privileged tissue. Hum. Immunol. 64:1039–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Crisa L, McMaster MT, Ishii JK, Fisher SJ, Salomon DR. (1997) Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J. Exp. Med. 186:289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cirulli V, et al. (2006) The class I HLA repertoire of pancreatic islets comprises the nonclassical class Ib antigen HLA-G. Diabetes. 55:1214–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Deschaseaux F, Delgado D, Pistoia V, Giuliani M, Morandi F, Durrbach A. (2011) HLA-G in organ transplantation: towards clinical applications. Cell. Mol. Life Sci. 68:397–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Rizzo R, Bortolotti D, Baricordi OR, Fainardi E. (2012) New insights into HLA-G and inflammatory diseases. Inflamm. Allergy Drug Targets. 11:448–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Yan WH. (2011) Human leukocyte antigen-G in cancer: are they clinically relevant Cancer Lett. 311:123–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Yan WH. (2011) HLA-G expression in cancers: potential role in diagnosis, prognosis and therapy. Endocr. Metab. Immune Disord. Drug Targets. 11:76–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Morandi F, Rouas-Freiss N, Pistoia V. (2014) The emerging role of soluble HLA-G in the control of chemotaxis. Cytokine Growth Factor Rev. 25:327–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Loumagne L, Baudhuin J, Favier B, Montespan F, Carosella ED, Rouas-Freiss N. (2014) In vivo evidence that secretion of HLA-G by immunogenic tumor cells allows their evasion from immunosurveillance. Int. J. Cancer. 135:2107–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin A, Xu HH, Xu DP, Zhang X, Wang Q, Yan WH. (2013) Multiple steps of HLA-G in ovarian carcinoma metastasis: alter NK cytotoxicity and induce matrix metalloproteinase-15 (MMP-15) expression. Hum. Immunol. 74:439–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Agaugué S, Carosella ED, Rouas-Freiss N. (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood. 117:7021–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Fainardi E, et al. (2011) Emerging topics and new perspectives on HLA-G. Cell. Mol. Life Sci. 68:433–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu H, Liu X, Jin H, Yang F, Gu W, Li X. (2013) Proteomic analysis of knock-down HLA-G in invasion of human trophoblast cell line JEG-3. Int. J. Clin. Exp. Pathol. 6:2451–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Guo Y, et al. (2013) Soluble human leukocyte antigen-g5 activates extracellular signal-regulated protein kinase signaling and stimulates trophoblast invasion. PLoS One. 8:e76023.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Amodio G, Gregori S. (2012) Human tolerogenic DC-10: perspectives for clinical applications. Transplant Res. 1:14.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Carosella ED, Gregori S, LeMaoult J. (2011) The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood. 118:6499–505.PubMedCrossRefGoogle Scholar
  25. 25.
    Amodio G, et al. (2015) HLA-G expression levels influence the tolerogenic activity of human DC-10. Haematologica. 100:548–57.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Morandi F, et al. (2011) Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells. Blood. 118:5840–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Morandi F, Ferretti E, Bocca P, Prigione I, Raffaghello L, Pistoia V. (2010) A novel mechanism of soluble HLA-G mediated immune modulation: downregulation of T cell chemokine receptor expression and impairment of chemotaxis. PLoS One. 5:e11763.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Le Gal FA, et al. (1999) HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int. Immunol. 11:1351–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin A, et al. (2007) HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann. Oncol. 18:1804–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Bainbridge DR, Ellis SA, Sargent IL. (2000) HLA-G suppresses proliferation of CD4(+) T-lymphocytes. J. Reprod. Immunol. 48:17–26.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Contini P, et al. (2003) Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur. J. Immunol. 33:125–34.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Horuzsko A, Lenfant F, Munn DH, Mellor AL. (2001) Maturation of antigen-presenting cells is compromised in HLA-G transgenic mice. Int. Immunol. 13:385–94.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Liang S, Ristich V, Arase H, Dausset J, Carosella ED, Horuzsko A. (2008) Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6—STAT3 signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 105:8357–8362.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gros F, Cabillic F, Toutirais O, Maux AL, Sebti Y, Amiot L. (2008) Soluble HLA-G molecules impair natural killer/dendritic cell crosstalk via inhibition of dendritic cells. Eur. J. Immunol. 38:742–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lesport E, et al. (2011) Inhibition of human Vγ9Vδ2 T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cell. Mol. Life Sci. 68:3385–99.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chen BG, Xu DP, Lin A, Yan WH. (2013) NK cytolysis is dependent on the proportion of HLA-G expression. Hum. Immunol. 74:286–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Zhang WQ, et al. (2014) HLA-G1 and HLA-G5 isoforms have an additive effect on NK cytolysis. Hum. Immunol. 75:182–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wiendl H, et al. (2002) A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol. 168:4772–80.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Riteau B, et al. (2001) HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int. Immunol. 13:193–201.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bukur J, et al. (2003) Functional role of human leukocyte antigen-G up-regulation in renal cell carcinoma. Cancer Res. 63:4107–11.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Naji A, et al. (2014) Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J. Immunol. 192:1536–46.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Baudhuin J, et al. (2013) Exocytosis acts as a modulator of the ILT4-mediated inhibition of neutrophil functions. Proc. Natl. Acad. Sci. U.S.A. 110:17957–62.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Carosella ED, Favier B, Rouas-Freiss N, Moreau P, Lemaoult J. (2008) Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood. 111:4862–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Carosella ED, HoWangYin KY, Favier B, LeMaoult J. (2008) HLA-G-dependent suppressor cells: Diverse by nature, function, and significance. Hum. Immunol. 69:700–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. (2004) HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc. Natl. Acad. Sci. U.S.A. 101:7064–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ristich V, Liang S, Zhang W, Wu J, Horuzsko A. (2005) Tolerization of dendritic cells by HLA-G. Eur. J. Immunol. 35:1133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gregori S, et al. (2010) Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood. 116:935–44.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Locafaro G, Amodio G, Tomasoni D, Tresoldi C, Ciceri F, Gregori S. (2014) HLA-G expression on blasts and tolerogenic cells in patients affected by acute myeloid leukemia. J. Immunol. Res. 2014:636292.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Serafini P. (2013) Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol. Res. 57:172–84.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Khaled YS, Ammori BJ, Elkord E. (2013) Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol. Cell Biol. 91:493–502.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Weide B, et al. (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin. Cancer Res. 20:1601–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhang W, Liang S, Wu J, Horuzsko A. (2008) Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation. 86:1125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Carosella ED, Gregori S, Rouas-Freiss N, LeMaoult J, Menier C, Favier B. (2011) The role of HLA-G in immunity and hematopoiesis. Cell. Mol. Life Sci. 68:353–68.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Caumartin J, et al. (2007) Trogocytosis-based generation of suppressive NK cells. EMBO J. 26:1423–33.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    HoWangYin KY, Alegre E, Daouya M, Favier B, Carosella ED, LeMaoult J. (2010) Different functional outcomes of intercellular membrane transfers to monocytes and T cells. Cell. Mol. Life Sci. 67:1133–45.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Brown R, et al. (2012) CD86+ or HLA-G+ can be transferred via trogocytosis from myeloma cells to T cells and are associated with poor prognosis. Blood. 120:2055–63.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Paul P, et al. (1998) HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc. Natl. Acad. Sci. U.S.A. 95:4510–5.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Riteau B, et al. (2003) Exosomes bearing HLA-G are released by melanoma cells. Hum. Immunol. 64:1064–72.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kleinberg L, et al. (2006) Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 449:31–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chen HX, et al. (2010) Upregulation of human leukocyte antigen-G expression and its clinical significance in ductal breast cancer. Hum. Immunol. 71:892–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    He X, et al. (2010) HLA-G expression in human breast cancer: implications for diagnosis and prognosis, and effect on allocytotoxic lymphocyte response after hormone treatment in vitro. Ann. Surg. Oncol. 17:1459–69.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    de Kruijf EM, et al. (2010) HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 185:7452–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    da Silva GB, et al. (2013) Expression of the classical and nonclassical HLA molecules in breast cancer. Int. J. Breast Cancer. 2013:250435.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ramos CS, et al. (2014) Analysis of HLA-G gene polymorphism and protein expression in invasive breast ductal carcinoma. Hum. Immunol. 75:667–672.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ye SR, Yang H, Li K, Dong DD, Lin XM, Yie SM. (2007) Human leukocyte antigen G expression: as a significant prognostic indicator for patients with colorectal cancer. Mod. Pathol. 20:375–83.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Guo ZY, et al. (2015) Predictive value of HLA-G and HLA-E in the prognosis of colorectal cancer patients. Cell. Immunol. 293:10–6.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Miranda LN, et al. (2015) Greater expression of the human leukocyte antigen-G (HLA-G) and interleukin-17 (IL-17) in cervical intraepithelial neoplasia: analytical cross-sectional study. Sao Paulo Med. J. 133:336–42.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Li XJ, Zhang X, Lin A, Ruan YY, Yan WH. (2012) Human leukocyte antigen-G (HLA-G) expression in cervical cancer lesions is associated with disease progression. Hum. Immunol. 73:946–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Barrier BF, Kendall BS, Sharpe-Timms KL, Kost ER. (2006) Characterization of human leukocyte antigen-G (HLA-G) expression in endometrial adenocarcinoma. Gynecol. Oncol. 103:25–30.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Bijen CB, et al. (2010) The prognostic role of classical and nonclassical MHC class I expression in endometrial cancer. Int. J. Cancer. 126:1417–27.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. (2007) Expression of HLA-G is associated with prognosis in esophageal squamous cell carcinoma. Am. J. Clin. Pathol. 128:1002–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lin A, et al. (2011) Human leukocyte antigen-G expression is associated with a poor prognosis in patients with esophageal squamous cell carcinoma. Int. J. Cancer. 129:1382–90.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zheng J, et al. (2014) Human leukocyte antigen G is associated with esophageal squamous cell carcinoma progression and poor prognosis. Immunol. Lett. 161:13–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hu J, et al. (2013) Overexpression of HLA-G Is positively associated with Kazakh esophageal squamous cell carcinoma in Xinjiang, China. Viral Immunol. 26:180–4.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. (2007) Expression of human leukocyte antigen G (HLA-G) correlates with poor prognosis in gastric carcinoma. Ann. Surg. Oncol. 14:2721–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Tuncel T, et al. (2013) Immunoregulatory function of HLA-G in gastric cancer. Asian Pac. J. Cancer Prev. 14:7681–4.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Du L, et al. (2011) Human leukocyte antigen-G is closely associated with tumor immune escape in gastric cancer by increasing local regulatory T cells. Cancer Sci. 102:1272–80.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wastowski IJ, et al. (2013) Human leukocyte antigen-G is frequently expressed in glioblastoma and may be induced in vitro by combined 5-aza-2’-deoxycytidine and interferon-γ treatments: results from a multicentric study. Am. J. Pathol. 182:540–52.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cai MY, et al. (2009) Human leukocyte antigen-G protein expression is an unfavorable prognostic predictor of hepatocellular carcinoma following curative resection. Clin. Cancer Res. 15:4686–93.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wang Y, Ye Z, Meng XQ, Zheng SS. (2011) Expression of HLA-G in patients with hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 10:158–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Lin A, et al. (2010) Aberrant human leucocyte antigen-G expression and its clinical relevance in hepatocellular carcinoma. J. Cell Mol. Med. 14:2162–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. (2007) Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer. Lung Cancer. 58:267–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Lin A, et al. (2010) Clinical relevance and functional implications for human leucocyte antigen-g expression in non-small-cell lung cancer. J. Cell Mol. Med. 14:2318–29.PubMedCrossRefGoogle Scholar
  84. 84.
    Yan WH, Liu D, Lu HY, Li YY, Zhang X, Lin A. (2015) Significance of tumour cell HLA-G5/-G6 isoform expression in discrimination for adenocarcinoma from squamous cell carcinoma in lung cancer patients. J. Cell Mol. Med. 19:778–85.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Cai MB, et al. (2012) Expression of human leukocyte antigen G is associated with prognosis in nasopharyngeal carcinoma. Int. J. Biol. Sci. 8:891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gonçalves AS, et al. (2014) The clinicopathologic significance of the expression of HLA-G in oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 117:361–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Jung YW, et al. (2009) Correlation of human leukocyte antigen-G (HLA-G) expression and disease progression in epithelial ovarian cancer. Reprod. Sci. 16:1103–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Rutten MJ, et al. (2014) HLA-G expression is an independent predictor for improved survival in high grade ovarian carcinomas. J. Immunol. Res. 2014:274584.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Menier C, Prevot S, Carosella ED, Rouas-Freiss N. (2009) Human leukocyte antigen-G is expressed in advanced-stage ovarian carcinoma of high-grade histology. Hum. Immunol. 70:1006–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Xu YF, et al. (2015) High expression of human leukocyte antigen-G is associated with a poor prognosis in patients with PDAC. Curr. Mol. Med. 15:360–7.PubMedCrossRefGoogle Scholar
  91. 91.
    de Figueiredo Feitosa NL, et al. (2014) HLA-G is differentially expressed in thyroid tissues. Thyroid. 24:585–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Nunes LM, et al. (2013) Association between the HLA-G molecule and lymph node metastasis in papillary thyroid cancer. Hum. Immunol. 74:447–51.PubMedCrossRefGoogle Scholar
  93. 93.
    Alkhouly N, Shehata I, Ahmed MB, Shehata H, Hassan S, Ibrahim T. (2013) HLA-G expression in acute lymphoblastic leukemia: a significant prognostic tumor biomarker. Med. Oncol. 30:460.PubMedCrossRefGoogle Scholar
  94. 94.
    Guo QY, Chen BG, Ruan YY, Lin A, Yan WH. (2011) HLA-G expression is irrelevant to prognosis in patients with acute myeloid leukemia. Leuk. Res. 35:1350–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Attia MA, Nosair NA, Gawally A, Elnagar G, Elshafey EM. (2014) HLA-G expression as a prognostic indicator in B-cell chronic lymphocytic leukemia. Acta Haematol. 132:53–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Nückel H, Rebmann V, Dürig J, Dührsen U, Grosse-Wilde H. (2005) HLA-G expression is associated with an unfavorable outcome and immunodeficiency in chronic lymphocytic leukemia. Blood. 105:1694–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Erikci AA, Karagoz B, Ozyurt M, Ozturk A, Kilic S, Bilgi O. (2009) HLA-G expression in B chronic lymphocytic leukemia: a new prognostic marker? Hematology. 14:101–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Perez-Chacon G, et al. (2009) Prognostic irrelevance of HLA-G in B-cell chronic lymphocytic leukemia. Int. J. Lab. Hematol. 31:327–37.PubMedCrossRefGoogle Scholar
  99. 99.
    Giannopoulos K, Dmoszyńska A, Bojarska-Junak A, Schmitt M, Rolifński J. (2008) Expression of HLA-G in patients with B-cell chronic lymphocytic leukemia (B-CLL). Folia Histochem. Cytobiol. 46:457–60.PubMedGoogle Scholar
  100. 100.
    Naji A, Menier C, Maki G, Carosella ED, Rouas-Freiss N. (2012) Neoplastic B-cell growth is impaired by HLA-G/ILT2 interaction. Leukemia. 26:1889–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. (2011) Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell. Mol. Life Sci. 68:369–95.PubMedCrossRefGoogle Scholar
  102. 102.
    Rizzo R, et al. (2014) HLA-G is a component of the chronic lymphocytic leukemia escape repertoire to generate immune suppression: impact of the HLA-G 14 base pair (rs66554220) polymorphism. Haematologica. 99:888–96.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bielska M, et al. (2015) Human leukocyte antigen-G polymorphisms influence the clinical outcome in diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 54:185–93.PubMedCrossRefGoogle Scholar
  104. 104.
    Ghandri N, et al. (2011) Association of HLA-G polymorphisms with nasopharyngeal carcinoma risk and clinical outcome. Hum. Immunol. 72:150–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Liang S, Baibakov B, Horuzsko A. (2002) HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur. J. Immunol. 32:2418–26.PubMedCrossRefGoogle Scholar
  106. 106.
    Ueshima C, et al. (2015) The killer cell Ig-like receptor 2DL4 expression in human mast cells and its potential role in breast cancer invasion. Cancer Immunol. Res. 3:871–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 34:2041–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Hiden U, et al. (2007) The first trimester human trophoblast cell line ACH-3P: a novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations—TNF-alpha stimulates MMP15 expression. BMC Dev. Biol. 7:137.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hiden U, et al. (2008) MT1-MMP expression in first-trimester placental tissue is upregulated in type 1 diabetes as a result of elevated insulin and tumor necrosis factor-alpha levels. Diabetes. 57:150–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Holtan SG, Creedon DJ, Haluska P, Markovic SN. (2009) Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin. Proc. 84:985–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Amiot L, Ferrone S, Grosse-Wilde H, Seliger B. (2011) Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell. Mol. Life Sci. 68:417–31.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zhang X, et al. (2014) Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials. 35:5148–61.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Komohara Y, et al. (2007) HLA-G as a target molecule in specific immunotherapy against renal cell carcinoma. Oncol. Rep. 18:1463–8.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Jasinski-Bergner S, et al. (2015) Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology. 4:e1008805.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  1. 1.Medical Research Center, Taizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiPeople’s Republic of China

Personalised recommendations