Advertisement

Molecular Medicine

, Volume 21, Issue 1, pp 873–885 | Cite as

Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

  • José Luis Cano-Peñalver
  • Mercedes Griera
  • Andrea García-Jerez
  • Marco Hatem-Vaquero
  • María Piedad Ruiz-Torres
  • Diego Rodríguez-Puyol
  • Sergio de Frutos
  • Manuel Rodríguez-Puyol
Research Article

Abstract

Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis-related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (ClS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage.

Notes

Acknowledgments

This work was supported by grants from the Spanish National Program for Research, Development and Innovation and cofunded by the Instituto de Salud Carlos III and FEDER funds (PI/11/01630, PI/14/01939, PI/14/02075 and FEDER funds ISCIII RETIC REDinREN programs RD06/0016/0002 and RD12/0021/0006) and the Spanish Ministerio de Ciencia e Innovación (SAF 2010-16198). JL Cano-Peñalver was supported by a fellowship from the Spanish Ministerio de Ciencia e Innovación (BES 2011-045069). We would like to thank S Dedhar for facilitating the floxed-ILK mice to establish cKD-ILK mice in our laboratory, and P Cannata for helping us during the setting of the histological analysis.

References

  1. 1.
    Sánchez-González PD, López-Hernández FJ, López-Novoa JM, Morales AI. (2011) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol. 41:803–821.CrossRefGoogle Scholar
  2. 2.
    Carvalho Rodrigues MA, Martins NM, dos Santos AC. (2012) Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch. Toxicol. 86:1233–1250.CrossRefGoogle Scholar
  3. 3.
    Pabla N, Dong Z. (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73:994–1007.CrossRefGoogle Scholar
  4. 4.
    Kim MK, et al. (2013) The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int. J. Clin. Exp. Pathol. 6:1747–58.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Burns WC, Thomas MC. (2010) The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev. Mol. Med. 12:e17.CrossRefGoogle Scholar
  6. 6.
    Sanz AB, Sanchez-Niño MD, Martín-Cleary C, Ortiz A, Ramos AM. (2013) Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin. Drug Discov. 8:879–95.CrossRefGoogle Scholar
  7. 7.
    Kaushal GP, Shah SV. (2014) Challenges and advances in the treatment of AKI. J. Am. Soc. Nephrol. 25:877–883.CrossRefGoogle Scholar
  8. 8.
    Lieberthal W, Nigam SK. (2000) Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable. Am. J. Physiol. Renal Physiol. 278:F1–12.CrossRefGoogle Scholar
  9. 9.
    Francis SH, Busch JL, Corbin JD, Sibley D. (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62:525–563.CrossRefGoogle Scholar
  10. 10.
    Agostino PV, Plano SA, Golombek DA. (2007) Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules. Proc. Natl. Acad. Sci. U. S. A. 104:9834–9.CrossRefGoogle Scholar
  11. 11.
    Aversa A, et al. (2007) Chronic sildenafil in men with diabetes and erectile dysfunction. Expert Opin. Drug Metab. Toxicol. 3:451–64.CrossRefGoogle Scholar
  12. 12.
    Prickaerts J, et al. (2002) Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience. 113:351–61.CrossRefGoogle Scholar
  13. 13.
    Polte T, Hemmerle A, Berndt G, Grosser N, Abate A, Schröder H. (2002). Atrial natriuretic peptide reduces cyclosporin toxicity in renal cells: role of cGMP and heme oxygenase-1. Free Radic. Biol. Med. 32:56–63.CrossRefGoogle Scholar
  14. 14.
    Guan Z, Miller SB, Greenwald JE. (1995) Zaprinast accelerates recovery from established acute renal failure in the rat. Kidney Int. 47:1569–75.CrossRefGoogle Scholar
  15. 15.
    Maimaitiyiming H, et al. (2013) Increasing cGMP-dependent protein kinase I activity attenuates cisplatin induced kidney injury through protection of mitochondria function. Am. J. Physiol Renal Physiol. 305:F881–90.CrossRefGoogle Scholar
  16. 16.
    Lee KW, et al. (2009) Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Toxicology. 257:137–43.CrossRefGoogle Scholar
  17. 17.
    Lee YC, Martin E, Murad F. (2000) Human recombinant soluble guanylyl cyclase: expression, purification, and regulation. Proc. Natl. Acad. Sci. U. S. A. 97:10763–8.CrossRefGoogle Scholar
  18. 18.
    Friebe A, Koesling D. (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ. Res. 93:96–105.CrossRefGoogle Scholar
  19. 19.
    Lincoln TM, Dey N, Sellak H. (2001) cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J. Appl. Physiol. 1:1421–30.CrossRefGoogle Scholar
  20. 20.
    Omori K, Kotera J. (2007) Overview of PDEs and their regulation. Circ. Res. 100:309–27.CrossRefGoogle Scholar
  21. 21.
    Filippov G, Bloch DB, Bloch KD. (1997) Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclise subunits in rat pulmonary artery smooth muscle cells. J. Clin. Invest. 100:942–8.CrossRefGoogle Scholar
  22. 22.
    González-Santiago L, López-Ongil S, Rodríguez-Puyol M, Rodríguez-Puyol D. (2002) Decreased nitric oxide synthesis in human endothelial cells cultured on type I collagen. Circ. Res. 9:539–45.CrossRefGoogle Scholar
  23. 23.
    De Frutos S, et al. (2005) Differential regulation of soluble guanylyl cyclase expression and signaling by collagens: involvement of integrin-linked kinase. J. Am. Soc. Nephrol. 16:2626–35.CrossRefGoogle Scholar
  24. 24.
    Díez-Marqués ML, et al. (2006) Arg-Gly-Asp (RGD)-containing peptides increase soluble guanylate cyclase in contractile cells. Cardiovasc. Res. 69:359–69.CrossRefGoogle Scholar
  25. 25.
    Serrano I, et al. (2013) ILK conditional deletion in adult animals increases cyclic GMP-dependent vasorelaxation. Cardiovasc. Res. 99:535–44.CrossRefGoogle Scholar
  26. 26.
    McDonald PC, Fielding AB, Dedhar S. (2008) Integrin-linked kinase-essential roles in physiology and cancer biology. J. Cell Sci. 121:3121–32.CrossRefGoogle Scholar
  27. 27.
    Alique M, et al. (2014) Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin Sci. 127:19–31.CrossRefGoogle Scholar
  28. 28.
    Gonzalez-Ramos M, et al. (2013) Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation. Free Radic. Biol. Med. 61:416–27.CrossRefGoogle Scholar
  29. 29.
    Ortega-Velazquez R, et al. (2004) Collagen I up-regulates extracellular matrix gene expression and secretion of TGF-beta 1 by cultured human mesangial cells. Am. J. Physiol. Cell Physiol. 286:C1335–43.CrossRefGoogle Scholar
  30. 30.
    Ortega-Velázquez R, et al. (2003) Arg-Gly-Asp-Ser (RGDS) peptide stimulates transforming growth factor beta1 transcription and secretion through integrin activation. FASEB J. 17:1529–31.CrossRefGoogle Scholar
  31. 31.
    Li Y, et al. (2009) Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J. Am. Soc. Nephrol. 20:1907–18.CrossRefGoogle Scholar
  32. 32.
    Kretzler M, et al. (2001) Integrin-linked kinase as a candidate downstream effector in proteinuria. FASEB J. 15:1843–5.CrossRefGoogle Scholar
  33. 33.
    Kang YS, et al. (2010) Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int. 78:363–73.CrossRefGoogle Scholar
  34. 34.
    El-Aouni C, et al. (2006) Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17:1334–44.CrossRefGoogle Scholar
  35. 35.
    Dai C, et al. (2006) Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. J. Am. Soc. Nephrol. 17:2164–75.CrossRefGoogle Scholar
  36. 36.
    Cano-Peñalver JL, et al. (2014) Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption. FASEB J. 28:3645–59.CrossRefGoogle Scholar
  37. 37.
    Islas MS, et al. (2014) Antitumoral, antihypertensive, antimicrobial, and antioxidant effects of an octanuclear copper(II)-telmisartan complex with an hydrophobic nanometer hole. Inorg. Chem. 53:5724–37.CrossRefGoogle Scholar
  38. 38.
    García G, et al. (2012) New losartan-hydrocaffeic acid hybrids as antihypertensive-antioxidant dual drugs: Ester, amide and amine linkers. Eur. J. Med. Chem. 50:90–101.CrossRefGoogle Scholar
  39. 39.
    Iglesias-De La Cruz MC, Ruiz-Torres MP, De Lucio-Cazaña FJ, Rodríguez-Puyol M, Rodríguez-Puyol D. (2000) Phenotypic modifications of human mesangial cells by extracellular matrix: the importance of matrix in the contractile response to reactive oxygen species. Exp. Nephrol. 8:97–103.CrossRefGoogle Scholar
  40. 40.
    Delbancut A, Lagroye I, Cambar J. (1994) Renal cytotoxicity of cisplatin in cultured glomerular mesangial and proximal and distal tubular cells. Toxicol. In Vitro. 8:517–9.CrossRefGoogle Scholar
  41. 41.
    Jo SK, Cho WY, Sung SA, Kim HK, Won NH. (2005) MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int. 67:458–66.CrossRefGoogle Scholar
  42. 42.
    Liu M, et al. (2006) A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J. Am. Soc. Nephrol. 17:765–74.CrossRefGoogle Scholar
  43. 43.
    Dey NB, Busch JL, Francis SH, Corbin JD, Lincoln TM. (2009) Cyclic GMP specifically suppresses Type-Ialpha cGMP-dependent protein kinase expression by ubiquitination. Cell Signal. 21:859–66.CrossRefGoogle Scholar
  44. 44.
    Dostmann WR, et al. (2002) Exploring the mechanisms of vascular smooth muscle tone with highly specific, membrane-permeable inhibitors of cyclic GMP-dependent protein kinase Ialpha. Pharmacol. Ther. 93:203–15.CrossRefGoogle Scholar
  45. 45.
    Shah MK, Kadowitz PJ. (2002) Cyclic adenosine monophosphate-dependent vascular responses to purinergic agonists adenosine triphosphate and uridine triphosphate in the anesthetized mouse. J. Cardiovasc. Pharmacol. 39:142–9.CrossRefGoogle Scholar
  46. 46.
    Tiboni GM, Lamonaca D. (2001) Transplacental exposure to methylene blue initiates teratogenesis in the mouse: preliminary evidence for a mechanistic implication of cyclic GMP pathway disruption. Teratology 64:213–20.CrossRefGoogle Scholar
  47. 47.
    Dousa TP. (1999) Cyclic-3’,5’-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney. Kidney Int. 55:29–62.CrossRefGoogle Scholar
  48. 48.
    Fernandes-Cerqueira C, et al. (2013) Concerted action of ANP and dopamine D1-receptor to regulate sodium homeostasis in nephrotic syndrome. Biomed. Res. Int. 2013:397391.CrossRefGoogle Scholar
  49. 49.
    Irie K, et al. (2001) Inhibitory effects of cyclic AMP elevating agents on lipopolysaccharide (LPS)-induced microvascular permeability change in mouse skin. Br. J. Pharmacol. 133:237–242.CrossRefGoogle Scholar
  50. 50.
    Sällström J, Jensen BL, Skøtt O, Gao X, Persson AE. (2010) Neuronal nitric oxide synthase supports Renin release during sodium restriction through inhibition of phosphodiesterase 3. Am. J. Hypertens. 23:1241–6.CrossRefGoogle Scholar
  51. 51.
    Sohn SJ, et al. (2013) In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol. Lett. 217:235–42.CrossRefGoogle Scholar
  52. 52.
    Havasi A, Borkan SC. (2011) Apoptosis and acute kidney injury. Kidney Int. 80:29–40.CrossRefGoogle Scholar
  53. 53.
    Kim CS, et al. (2012) Altered regulation of nitric oxide and natriuretic peptide system in cisplatin-induced nephropathy. Regul. Pept. 174:65–70.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • José Luis Cano-Peñalver
    • 1
    • 2
  • Mercedes Griera
    • 1
    • 2
  • Andrea García-Jerez
    • 1
    • 2
  • Marco Hatem-Vaquero
    • 1
    • 2
  • María Piedad Ruiz-Torres
    • 1
    • 2
  • Diego Rodríguez-Puyol
    • 2
    • 3
  • Sergio de Frutos
    • 1
    • 2
  • Manuel Rodríguez-Puyol
    • 1
    • 2
  1. 1.Departamento de Biología de Sistemas, Unidad Fisiología, Facultad de MedicinaUniversidad de AlcaláAlcalá de Henares, MadridSpain
  2. 2.Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos IIIMadridSpain
  3. 3.Biomedical Research Foundation and Nephrology DepartmentHospital Príncipe de AsturiasAlcalá de Henares, MadridSpain

Personalised recommendations