Advertisement

Molecular Medicine

, Volume 21, Issue 1, pp 26–37 | Cite as

A Coding Variant of ANO10, Affecting Volume Regulation of Macrophages, Is Associated with Borrelia Seropositivity

  • Christian Hammer
  • Podchanart Wanitchakool
  • Lalida Sirianant
  • Sergi Papiol
  • Mathieu Monnheimer
  • Diana Faria
  • Jiraporn Ousingsawat
  • Natalie Schramek
  • Corinna Schmitt
  • Gabriele Margos
  • Angelika Michel
  • Peter Kraiczy
  • Michael Pawlita
  • Rainer Schreiber
  • Thomas F. Schulz
  • Volker Fingerle
  • Hayrettin Tumani
  • Hannelore Ehrenreich
  • Karl Kunzelmann
Research Article

Abstract

In a first genome-wide association study (GWAS) approach to anti-Borrelia seropositivity, we identified two significant single nucleotide polymorphisms (SNPs) (rs17850869, P = 4.17E-09; rs41289586, P = 7.18E-08). Both markers, located on chromosomes 16 and 3, respectively, are within or close to genes previously connected to spinocerebellar ataxia. The risk SNP rs41289586 represents a missense variant (R263H) of anoctamin 10 (ANO10), a member of a protein family encoding Cl channels and phospholipid scramblases. ANO10 augments volume-regulated Cl currents (IHypo) in Xenopus oocytes, HEK293 cells, lymphocytes and macrophages and controls volume regulation by enhancing regulatory volume decrease (RVD). ANO10 supports migration of macrophages and phagocytosis of spirochetes. The R263H variant is inhibitory on IHypo, RVD and intracellular Ca2+ signals, which may delay spirochete clearance, thereby sensitizing adaptive immunity. Our data demonstrate for the first time that ANO10 has a central role in innate immune defense against Borrelia infection.

Notes

Acknowledgments

This work was supported by the Max Planck Society and the Max Planck Förderstiftung, as well as by the DFGSFB699A12, DFG KU756/12-1, Volkswagenstiftung AZ 87499 and the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony. This work was also supported by a Young Investigator Grant from the Brain & Behavior Research Foundation, as well as a postdoctoral scholarship from the Daimler and Benz Foundation, both awarded to C Hammer.

Supplementary material

10020_2015_2101026_MOESM1_ESM.pdf (5.3 mb)
Supplementary material, approximately 5.26 MB.

References

  1. 1.
    Shapiro ED. (2014) Clinical practice. Lyme disease. N. Engl. J. Med. 370:1724–31.CrossRefGoogle Scholar
  2. 2.
    Stanek G, Wormser GP, Gray J, Strle F. (2012) Lyme borreliosis. Lancet. 379:461–73.CrossRefGoogle Scholar
  3. 3.
    Fallon BA, Nields JA. (1994) Lyme disease: a neuropsychiatric illness. Am. J. Psychiatry. 151:1571–83.CrossRefGoogle Scholar
  4. 4.
    Hess A, et al. (1999) Borrelia burgdorferi central nervous system infection presenting as an organic schizophrenialike disorder. Biol. Psychiatry. 45:795.CrossRefGoogle Scholar
  5. 5.
    Hanincova K, et al. (2013) Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS ONE. 8:e73066.CrossRefGoogle Scholar
  6. 6.
    Casjens SR, et al. (2012) Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE. 7:e33280.CrossRefGoogle Scholar
  7. 7.
    Chapman SJ, Hill AV. (2012) Human genetic susceptibility to infectious disease. Nat. Rev. Genet. 13:175–88.CrossRefGoogle Scholar
  8. 8.
    Ribbe K, et al. (2010) The cross-sectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients. BMC Psychiatry. 10:91.CrossRefGoogle Scholar
  9. 9.
    Hammer C, et al. (2014) Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol. Psychiatry. 19:1143–9.CrossRefGoogle Scholar
  10. 10.
    World Medical Association. (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 310: 2191–4.CrossRefGoogle Scholar
  11. 11.
    (2000) Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. 4th edition, text revision. Washington, DC: American Psychiatric Association. 943 pp.Google Scholar
  12. 12.
    Begemann M, et al. (2010) Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch. Gen. Psychiatry. 67:879–88.CrossRefGoogle Scholar
  13. 13.
    Franke GH. (2000) BSI: Brief Symptom Inventory von L. R. Derogatis. Göttingen: Beltz.Google Scholar
  14. 14.
    Yang J, Lee SH, Goddard ME, Visscher PM. (2011) GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:76–82.CrossRefGoogle Scholar
  15. 15.
    Purcell S, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559–75.CrossRefGoogle Scholar
  16. 16.
    Johnson AD, et al. (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 24:2938–9.CrossRefGoogle Scholar
  17. 17.
    Ousingsawat J, et al. (2015) Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7-receptors in macrophages. Nat. Commun. 6:6245.CrossRefGoogle Scholar
  18. 18.
    Almaca J, et al. (2009) TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J. Biol. Chem. 284:28571–8.CrossRefGoogle Scholar
  19. 19.
    Abecasis GR, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature. 491:56–65.CrossRefGoogle Scholar
  20. 20.
    Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP) [Internet]. Seattle, WA; [cited 2014 Jul 17]. Available from: https://doi.org/evs.gs.washington.edu/EVS/
  21. 21.
    Zoghbi HY, Orr HT. (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J. Biol. Chem. 284:7425–9.CrossRefGoogle Scholar
  22. 22.
    Adzhubei IA, et al. (2010) A method and server for predicting damaging missense mutations. Nat. Methods. 7:248–9.CrossRefGoogle Scholar
  23. 23.
    Choi Y, Chan AP. (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015, Apr 6 [Epub ahead of print].Google Scholar
  24. 24.
    Kumar P, Henikoff S, Ng PC. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4: 1073–81.CrossRefGoogle Scholar
  25. 25.
    Chamova T, et al. (2012) ANO10 c.1150_1151del is a founder mutation causing autosomal recessive cerebellar ataxia in Roma/Gypsies. J. Neurol. 259:906–11.CrossRefGoogle Scholar
  26. 26.
    Vermeer S, et al. (2010) Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am. J. Hum. Genet. 87:813–9.CrossRefGoogle Scholar
  27. 27.
    Yang YD, et al. (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 455:1210–5.CrossRefGoogle Scholar
  28. 28.
    Schroeder BC, Cheng T, Jan YN, Jan LY. (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 134:1019–29.CrossRefGoogle Scholar
  29. 29.
    Caputo A, et al. (2008) TMEM16A, A Membrane Protein Associated With Calcium-Dependent Chloride Channel Activity. Science. 322:590–4.CrossRefGoogle Scholar
  30. 30.
    Suzuki J, Umeda M, Sims PJ, Nagata S. (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 468:834–8.CrossRefGoogle Scholar
  31. 31.
    Malvezzi M, et al. (2013) Ca(2+)-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat. Commun. 4:2367.CrossRefGoogle Scholar
  32. 32.
    Brunner JD, et al. (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature. 516:207–12.CrossRefGoogle Scholar
  33. 33.
    Martins JR, et al. (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc. Natl. Acad. Sci. U. S. A. 108:18168–72.CrossRefGoogle Scholar
  34. 34.
    Juul CA, et al. (2014) Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca. Pflugers Arch. 466:1899–910.CrossRefGoogle Scholar
  35. 35.
    Schwab A, Fabian A, Hanley PJ, Stock C. (2012) Role of ion channels and transporters in cell migration. Physiol. Rev. 92:1865–913.CrossRefGoogle Scholar
  36. 36.
    Voss FK, et al. (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 344:634–8.CrossRefGoogle Scholar
  37. 37.
    Qiu Z, et al. (2014) SWELL1, a Plasma Membrane Protein, Is an Essential Component of Volume-Regulated Anion Channel. Cell. 157:447–58.CrossRefGoogle Scholar
  38. 38.
    Preston GM, Carroll TP, Guggino WB, Agre P. (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 256:385–7.CrossRefGoogle Scholar
  39. 39.
    Gosling M, Poyner DR, Smith JW. (1996) Effects of arachidonic acid upon the volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells. J. Physiol. 493:613–23.CrossRefGoogle Scholar
  40. 40.
    Wu X, et al. (1997) Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J. Membr. Biol. 158:127–36.CrossRefGoogle Scholar
  41. 41.
    Berende A, et al. (2010) Activation of innate host defense mechanisms by Borrelia. Eur. Cytokine Netw. 21:7–18.PubMedGoogle Scholar
  42. 42.
    Steere AC, Coburn J, Glickstein L. (2004) The emergence of Lyme disease. J. Clin. Invest. 113:1093–101.CrossRefGoogle Scholar
  43. 43.
    Arav-Boger R, Crawford T, Steere AC, Halsey NA. (2002) Cerebellar ataxia as the presenting manifestation of Lyme disease. Pediatr. Infect. Dis. J. 21:353–6.CrossRefGoogle Scholar
  44. 44.
    Hoffmann EK, Lambert IH, Pedersen SF. (2009) Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89:193–277.CrossRefGoogle Scholar
  45. 45.
    Nilius B, et al. (1997) Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys, Mol. Biol. 68:69–119.CrossRefGoogle Scholar
  46. 46.
    Strange K, Emma F, Jackson PS. (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270:C711–30.CrossRefGoogle Scholar
  47. 47.
    Lemonnier L, et al. (2002) Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J. 16:222–4.CrossRefGoogle Scholar
  48. 48.
    Horne DJ, et al. (2012) Common polymorphisms in the PKP3-SIGIRR-TMEM16J gene region are associated with susceptibility to tuberculosis. J. Infect. Dis. 205:586–94.CrossRefGoogle Scholar
  49. 49.
    Bowman AB, et al. (2007) Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nat. Genet. 39:373–9.CrossRefGoogle Scholar
  50. 50.
    Dehnert M, et al. (2012) Seropositivity of Lyme borreliosis and associated risk factors: a population-based study in Children and Adolescents in Germany (KiGGS). PLoS ONE. 7:e41321.CrossRefGoogle Scholar
  51. 51.
    Pachner AR. (1988) Borrelia burgdorferi in the nervous system: the new “great imitator.” Ann. N. Y. Acad. Sci. 539:56–64.CrossRefGoogle Scholar
  52. 52.
    Bartha I, et al. (2013) A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity and viral control. Elife. 2:e01123.CrossRefGoogle Scholar
  53. 53.
    Liveris D, et al. (2011) Improving the yield of blood cultures from patients with early Lyme disease. J. Clin. Microbiol. 49:2166–8.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Christian Hammer
    • 1
  • Podchanart Wanitchakool
    • 2
  • Lalida Sirianant
    • 2
  • Sergi Papiol
    • 1
  • Mathieu Monnheimer
    • 1
  • Diana Faria
    • 2
  • Jiraporn Ousingsawat
    • 2
  • Natalie Schramek
    • 3
  • Corinna Schmitt
    • 4
  • Gabriele Margos
    • 5
  • Angelika Michel
    • 6
  • Peter Kraiczy
    • 7
  • Michael Pawlita
    • 6
  • Rainer Schreiber
    • 2
  • Thomas F. Schulz
    • 4
  • Volker Fingerle
    • 5
  • Hayrettin Tumani
    • 3
  • Hannelore Ehrenreich
    • 1
    • 8
  • Karl Kunzelmann
    • 2
  1. 1.Clinical NeuroscienceMax Planck Institute of Experimental MedicineGöttingenGermany
  2. 2.Institut für Physiologie, Department of PhysiologyUniversität RegensburgRegensburgGermany
  3. 3.Department of NeurologyUniversity of UlmUlmGermany
  4. 4.Hannover Medical SchoolInstitute of VirologyHannoverGermany
  5. 5.Bavarian Health and Food Safety AuthorityNational Reference Center for BorreliaMunichGermany
  6. 6.Division of Genome Modifications and Carcinogenesis, Infections and Cancer ProgramGerman Cancer Research CenterHeidelbergGermany
  7. 7.Institute of Medical Microbiology and Infection ControlUniversity Hospital of Frankfurt am MainFrankfurt/MainGermany
  8. 8.DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany

Personalised recommendations