Advertisement

Molecular Medicine

, Volume 21, Issue 1, pp 143–153 | Cite as

Valsartan Attenuates Atherosclerosis via Upregulating the Th2 Immune Response in Prolonged Angiotensin II-Treated ApoE−/− Mice

  • Kai Meng
  • Qiutang Zeng
  • Qinghua Lu
  • Yingzhong Lin
  • Bangwei Wu
  • Kunwu Yu
  • Zhaoqiang Dong
  • Jianwei Zhang
  • Meng Chai
  • Yuyang Liu
  • Qingwei Ji
  • Yujie Zhou
Research Article

Abstract

Valsartan has a protective effect against hypertension and atherosclerosis in humans and experimental animal models. This study aimed to determine the effect of prolonged treatment with angiotensin II (Ang II) on atherosclerosis and the effect of valsartan on the activity of CD4+ T lymphocyte subsets. The results showed that prolonged treatment (8 wks) with exogenous Ang II resulted in an increased atherosclerotic plaque size and a switch of stable-to-unstable plaque via modulating on CD4+ T lymphocyte activity, including an increase in the T helper cell type 1 (Th1) and Th17 cells and a decrease in Th2 and regulatory T (Treg) cells. In contrast, valsartan treatment efficiently reversed the imbalance in CD4+ T lymphocyte activity, ameliorated atherosclerosis and elicited a stable plaque phenotype in addition to controlling blood pressure. In addition, treatment with anti-interleukin (IL)-5 monoclonal antibodies weakened the antiatherosclerotic effects of valsartan without affecting blood pressure.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81160045),81270285,81270354 and 81360055), the Beijing Municipal HighLevel Talent Foundation of Health System (2011-1-5), Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (Code ZY201303) and the National Key Clinical Specialty Construction Project.

References

  1. 1.
    Medzhitov R, et al. (2011) Highlights of 10 years of immunology in Nature Reviews Immunology. Nat. Rev. Immunol. 11:693–702.CrossRefGoogle Scholar
  2. 2.
    Robertson AK, Hansson GK. (2006) T cells in atherogenesis: for better or for worse? Arterioscler. Thromb. Vasc. Biol. 26:2421–32.CrossRefGoogle Scholar
  3. 3.
    Frostegård J, et al. (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 145:33–43.CrossRefGoogle Scholar
  4. 4.
    Whitman SC, Ravisankar P, Elam H, Daugherty A. (2000) Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/- mice. Am. J. Pathol. 157:1819–24.CrossRefGoogle Scholar
  5. 5.
    Mazzolai L, et al. (2004) Endogenous angiotensin II induces atherosclerotic plaque vulnerability and elicits a Th1 response in ApoE-/- mice. Hypertension. 44:277–82.CrossRefGoogle Scholar
  6. 6.
    Cheng X, et al. (2008) Suppressive oligodeoxynucleotides inhibit atherosclerosis in ApoE(-/-) mice through modulation of Th1/Th2 balance. J. Mol. Cell Cardiol. 45:168–75.CrossRefGoogle Scholar
  7. 7.
    Erbel C, et al. (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J. Immunol. 183:8167–75.CrossRefGoogle Scholar
  8. 8.
    Smith E, et al. (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation. 121:1746–55.CrossRefGoogle Scholar
  9. 9.
    Butcher MJ, Gjurich BN, Phillips T, Galkina EV. (2012) The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ. Res. 110:675–87.CrossRefGoogle Scholar
  10. 10.
    Ait-Oufella H, et al. (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12:178–80.CrossRefGoogle Scholar
  11. 11.
    Mor A, et al. (2007) Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27:893–900.CrossRefGoogle Scholar
  12. 12.
    Zhong Y, et al. (2012) CD4+LAP+ and CD4+CD25+Foxp3+ regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J. Clin. Immunol. 32:1104–17.CrossRefGoogle Scholar
  13. 13.
    Yu K, et al. (2013) Thymic stromal lymphopoietin attenuates the development of atherosclerosis in ApoE-/- mice. J. Am. Heart Assoc. 2:e000391.CrossRefGoogle Scholar
  14. 14.
    Klingenberg R, et al. (2013) Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123:1323–34.CrossRefGoogle Scholar
  15. 15.
    Strawn WB, Ferrario CM. (2002) Mechanisms linking angiotensin II and atherogenesis. Curr. Opin. Lipidol. 13:505–12.CrossRefGoogle Scholar
  16. 16.
    Ferrario CM. (2002) Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am. J. Hypertens. 15:9S–13S.CrossRefGoogle Scholar
  17. 17.
    Arishiro K, et al. (2007) Angiotensin receptor-1 blocker inhibits atherosclerotic changes and endothelial disruption of the aortic valve in hypercholesterolemic rabbits. J. Am. Coll. Cardiol. 49:1482–9.CrossRefGoogle Scholar
  18. 18.
    Tedgui A, Mallat Z. (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86:515–81.CrossRefGoogle Scholar
  19. 19.
    Madhur MS, et al. (2010) Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 55:500–7.CrossRefGoogle Scholar
  20. 20.
    Barhoumi T, et al. (2011) T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 57:469–76.CrossRefGoogle Scholar
  21. 21.
    Kassan M, Galan M, Partyka M, Trebak M, Matrougui K. (2011) Interleukin-10 released by CD4+CD25+ natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler. Thromb. Vasc. Biol. 31:2534–42.CrossRefGoogle Scholar
  22. 22.
    Shao J, et al. (2003) Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension. 42:31–8.CrossRefGoogle Scholar
  23. 23.
    McMurray J, et al. (2006) The effect of valsartan, captopril, or both on atherosclerotic events after acute myocardial infarction: an analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT). J. Am. Coll. Cardiol. 47:726–33.CrossRefGoogle Scholar
  24. 24.
    de Gasparo M. (2000) New basic science initiatives with the angiotensin II receptor blocker valsartan. J. Renin Angiotensin Aldosterone Syst. 1:S3–5.CrossRefGoogle Scholar
  25. 25.
    Daugherty A, Whitman SC. (2003) Quantification of atherosclerosis in mice. Methods Mol. Biol. 209:293–309.PubMedGoogle Scholar
  26. 26.
    Binder CJ, et al. (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114:427–37.CrossRefGoogle Scholar
  27. 27.
    Miller AM, et al. (2008) IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205:339–46.CrossRefGoogle Scholar
  28. 28.
    Methe H, et al. (2005) Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. J. Am. Coll. Cardiol. 45:1939–45.CrossRefGoogle Scholar
  29. 29.
    Ji QW, et al. (2009) Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch. Med. Res. 40:285–93.CrossRefGoogle Scholar
  30. 30.
    Benagiano M, et al. (2003) T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc. Natl. Acad. Sci. U. S. A. 100:6658–63.CrossRefGoogle Scholar
  31. 31.
    Engelbertsen D, et al. (2013) T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler. Thromb. Vasc. Biol. 33:637–44.CrossRefGoogle Scholar
  32. 32.
    Tracy RP, et al. (2013) T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2:e000117.CrossRefGoogle Scholar
  33. 33.
    Davenport P, Tipping PG. (2003) The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163:1117–25.CrossRefGoogle Scholar
  34. 34.
    Perry HM, et al. (2013) Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler. Thromb. Vasc. Biol. 33:2771–9.CrossRefGoogle Scholar
  35. 35.
    Cardilo-Reis L, et al. (2012) Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4:1072–86.CrossRefGoogle Scholar
  36. 36.
    McLaren JE, et al. (2010) IL-33 reduces macrophage foam cell formation. J. Immunol.185:1222–9.CrossRefGoogle Scholar
  37. 37.
    Guzik TJ, et al. (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204:2449–60.CrossRefGoogle Scholar
  38. 38.
    Marvar PJ, et al. (2012) T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol. Psychiatry. 71:774–82.CrossRefGoogle Scholar
  39. 39.
    Zhang JD, et al. (2012) A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ. Res. 110:1604–17.CrossRefGoogle Scholar
  40. 40.
    Barhoumi T, et al. (2011) T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 57:469–76.CrossRefGoogle Scholar
  41. 41.
    Madhur MS, et al. (2011) Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31:1565–72.CrossRefGoogle Scholar
  42. 42.
    Kvakan H, et al. (2009) Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation. 119:2904–12.CrossRefGoogle Scholar
  43. 43.
    Matrougui K, et al. (2011) Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol. 178:434–41.CrossRefGoogle Scholar
  44. 44.
    Ait-Oufella H, et al. (2013) Natural regulatory T cells limit angiotensin II-induced aneurysm formation and rupture in mice. Arterioscler. Thromb. Vasc. Biol. 33:2374–9.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Kai Meng
    • 1
    • 2
  • Qiutang Zeng
    • 2
  • Qinghua Lu
    • 1
  • Yingzhong Lin
    • 3
  • Bangwei Wu
    • 2
  • Kunwu Yu
    • 2
  • Zhaoqiang Dong
    • 1
  • Jianwei Zhang
    • 4
  • Meng Chai
    • 4
  • Yuyang Liu
    • 4
  • Qingwei Ji
    • 2
    • 3
    • 4
  • Yujie Zhou
    • 4
  1. 1.Department of CardiologyThe Second Hospital of Shandong UniversityJinanChina
  2. 2.Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of CardiologyThe People’s Hospital of Guangxi Zhuang Autonomous RegionNanningChina
  4. 4.Department of Cardiology, Beijing Anzhen HospitalCapital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-related Cardiovascular Disease, Ministry of EducationBeijingChina

Personalised recommendations