Molecular Medicine

, Volume 20, Issue 1, pp 466–477 | Cite as

Cell Death and DAMPs in Acute Pancreatitis

  • Rui Kang
  • Michael T. Lotze
  • Herbert J. Zeh
  • Timothy R. Billiar
  • Daolin Tang
Review Article


Cell death and inflammation are key pathologic responses of acute pancreatitis (AP), the leading cause of hospital admissions for gastrointestinal disorders. It is becoming increasingly clear that damage-associated molecular pattern molecules (DAMPs) play an important role in the pathogenesis of AP by linking local tissue damage to systemic inflammation syndrome. Endogenous DAMPs released from dead, dying or injured cells initiate and extend sterile inflammation via specific pattern recognition receptors. Inhibition of the release and activity of DAMPs (for example, high mobility group box 1, DNA, histones and adenosine triphosphate) provides significant protection against experimental AP. Moreover, increased serum levels of DAMPs in patients with AP correlate with disease severity. These findings provide novel insight into the mechanism, diagnosis and management of AP. DAMPs might be an attractive therapeutic target in AP.



We apologize to the researchers who were not referenced due to space limitations. We thank Christine Heiner (Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA) for her critical reading of the manuscript. This work was supported by the National Institutes of Health (R01CA160417 to D Tang; R01CA181450 to HJ Zeh/MT Lotze) and a 2013 Pancreatic Cancer Action Network-AACR Career Development Award (grant number 13-20-25-TANG). The work supporting the findings reviewed in this manuscript was aided by core support from the University of Pittsburgh Cancer Institute (NIH grant P30CA047904).


  1. 1.
    Whitcomb DC. (2006) Clinical practice. Acute pancreatitis. N. Engl. J. Med. 354:2142–50.CrossRefPubMedGoogle Scholar
  2. 2.
    van Geenen EJ, et al. (2010) Etiology and diagnosis of acute biliary pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 7:495–502.CrossRefPubMedGoogle Scholar
  3. 3.
    Sand J, Lankisch PG, Nordback I. (2007) Alcohol consumption in patients with acute or chronic pancreatitis. Pancreatology. 7:147–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Banks PA, et al. (2013) Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut. 62:102–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Sand J, Nordback I. (2009) Acute pancreatitis: risk of recurrence and late consequences of the disease. Nat. Rev. Gastroenterol. Hepatol. 6:470–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu BU, Banks PA. (2013) Clinical management of patients with acute pancreatitis. Gastroenterology. 144:1272–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Haydock MD, et al. (2013) Fluid therapy in acute pancreatitis: anybody’s guess. Ann. Surg. 257:182–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Whitcomb DC. (2013) Genetic risk factors for pancreatic disorders. Gastroenterology. 144:1292–302.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoque R, Malik AF, Gorelick F, Mehal WZ. (2012) Sterile inflammatory response in acute pancreatitis. Pancreas. 41:353–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hoque R, et al. (2011) TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology. 141:358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kang R, et al. (2014) Intracellular hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 146:1097–107.CrossRefPubMedGoogle Scholar
  12. 12.
    Zitvogel L, Kepp O, Kroemer G. (2010) Decoding cell death signals in inflammation and immunity. Cell. 140:798–804.CrossRefPubMedGoogle Scholar
  13. 13.
    Bianchi ME. (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81:1–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Tang D, et al. (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249:158–75.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lerch MM, Gorelick FS. (2013) Models of acute and chronic pancreatitis. Gastroenterology. 144:1180–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Saluja AK, Dudeja V. (2013) Relevance of animal models of pancreatic cancer and pancreatitis to human disease. Gastroenterology. 144:1194–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sah RP, Garg P, Saluja AK. (2012) Pathogenic mechanisms of acute pancreatitis. Curr. Opin. Gastroenterol. 28:507–15.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pandol SJ, Saluja AK, Imrie CW, Banks PA. (2007) Acute pancreatitis: bench to the bedside. Gastroenterology. 132:1127–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Dawra R, et al. (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology. 141:2210–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tsai K, et al. (1998) Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis. Gut. 42:850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Frick TW. (2012) The role of calcium in acute pancreatitis. Surgery. 152:S157–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Mulder DS, Brown RA, Thompson AG, Gurd FN. (1965) Acute hypotension in the pathogenesis of pancreatitis. Surg. Forum. 16:380–2.PubMedGoogle Scholar
  23. 23.
    Bhoomagoud M, et al. (2009) Reducing extracellular pH sensitizes the acinar cell to secretagogue-induced pancreatitis responses in rats. Gastroenterology. 137:1083–92.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gukovskaya AS, Gukovsky I. (2011) Which way to die: the regulation of acinar cell death in pancreatitis by mitochondria, calcium, and reactive oxygen species. Gastroenterology. 140:1876–80.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kubisch CH, et al. (2006) Early activation of endoplasmic reticulum stress is associated with arginine-induced acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 291:G238–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Steer ML, Meldolesi J, Figarella C. Pancreatitis. (1984) The role of lysosomes. Dig. Dis. Sci. 29:934–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen X, et al. (2002) NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology. 122:448–57.CrossRefPubMedGoogle Scholar
  28. 28.
    Neuhofer P, et al. (2012) Deletion of IkappaBalpha activates RelA to reduce acute pancreatitis in mice through up-regulation of Spi2A. Gastroenterology. 144:192–201.CrossRefPubMedGoogle Scholar
  29. 29.
    Huang H, et al. (2012) Activation of nuclear factor-kappaB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology. 144:202–10.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rakonczay Z Jr, et al. (2008) The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut. 57:259–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Abdulla A, Awla D, Thorlacius H, Regner S. (2011) Role of neutrophils in the activation of 475 trypsinogen in severe acute pancreatitis. J. Leukoc. Biol. 90:975–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang H, et al. (2013) IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J. Clin. Invest. 123:1019–31.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Galluzzi L, et al. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 19:107–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Bhatia M. (2004) Apoptosis versus necrosis in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 286:G189–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Kaiser AM, et al. (1995) Relationship between severity, necrosis, and apoptosis in five models of experimental acute pancreatitis. Am. J. Physiol. 269:C1295–304.CrossRefPubMedGoogle Scholar
  36. 36.
    Vernon PJ, Tang D. (2013) Eat-me: autophagy, phagocytosis, and reactive oxygen species signaling. Antioxid. Redox. Signal 18:677–91.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shimada K, et al. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–14.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McGill MR, et al. (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Invest. 122:1574–83.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Imaeda AB, et al. (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119:305–14.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zong WX, Thompson CB. (2006) Necrotic death as a cell fate. Genes. Dev. 20:1–15.CrossRefPubMedGoogle Scholar
  41. 41.
    Gu H, et al. (2013) Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis. Cell Death Dis. 4:e816.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ditsworth D, Zong WX, Thompson CB. (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J. Biol. Chem. 282:17845–54.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mota RA, et al. (2005) Inhibition of poly(ADP-ribose) polymerase attenuates the severity of acute pancreatitis and associated lung injury. Lab. Invest. 85:1250–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Criddle DN, et al. (2007) Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ. 14:1285–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Shi C, Andersson R, Zhao X, Wang X. (2005) Potential role of reactive oxygen species in pancreatitis-associated multiple organ dysfunction. Pancreatology. 5:492–500.CrossRefPubMedGoogle Scholar
  46. 46.
    Hengartner MO. (2000) The biochemistry of apoptosis. Nature. 407:770–6.CrossRefGoogle Scholar
  47. 47.
    Riedl SJ, Shi Y. (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell. Biol. 5:897–907.CrossRefPubMedGoogle Scholar
  48. 48.
    Youle RJ, Strasser A. (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9:47–59.CrossRefGoogle Scholar
  49. 49.
    Jiang X, Wang X. (2004) Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73:87–106.CrossRefPubMedGoogle Scholar
  50. 50.
    Du C, et al. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 102:33–42.CrossRefPubMedGoogle Scholar
  51. 51.
    Gukovskaya AS, et al. (1996) Mechanisms of cell death after pancreatic duct obstruction in the opossum and the rat. Gastroenterology. 110:875–84.CrossRefPubMedGoogle Scholar
  52. 52.
    Cao Y, et al. (2007) Induction of apoptosis by crambene protects mice against acute pancreatitis via anti-inflammatory pathways. Am. J. Pathol. 170:1521–34.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Booth DM, et al. (2011) Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology. 140:2116–25.CrossRefPubMedGoogle Scholar
  54. 54.
    Mareninova OA, et al. (2006) Cell death in pancreatitis: caspases protect from necrotizing pancreatitis. J. Biol. Chem. 281:3370–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Gukovskaya AS, et al. (2002) Cholecystokinin induces caspase activation and mitochondrial dysfunction in pancreatic acinar cells. Roles in cell injury processes of pancreatitis. J. Biol. Chem. 277:22595–604.CrossRefPubMedGoogle Scholar
  56. 56.
    Bhagat L, et al. (2002) Thermal stress-induced HSP70 mediates protection against intrapancreatic trypsinogen activation and acute pancreatitis in rats. Gastroenterology. 122:156–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Frossard JL, et al. (2002) Both thermal and non-thermal stress protect against caerulein induced pancreatitis and prevent trypsinogen activation in the pancreas. Gut. 50:78–83.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Takeyama Y. (2005) Significance of apoptotic cell death in systemic complications with severe acute pancreatitis. J. Gastroenterol. 40:1–10.CrossRefPubMedGoogle Scholar
  59. 59.
    Klionsky DJ, Emr SD. (2000) Autophagy as a regulated pathway of cellular degradation. Science. 290:1717–21.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kroemer G, Levine B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell. Biol. 9:1004–10.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thorburn J, et al. (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 16:175–83.CrossRefPubMedGoogle Scholar
  62. 62.
    Levine B, Mizushima N, Virgin HW. (2011) Autophagy in immunity and inflammation. Nature. 469:323–35.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hou W, et al. (2013) Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4:e966.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zhang Q, et al. (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy. 9:451–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gukovsky I, et al. (2013) Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 144:1199–209.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Gukovsky I, et al. (2012) Impaired autophagy and organellar dysfunction in pancreatitis. J. Gastroenterol. Hepatol. 27 Suppl 2:27–32.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mareninova OA, et al. (2009) Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J. Clin. Invest. 119:3340–55.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hashimoto D, et al. (2008) Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J. Cell Biol. 181:1065–72.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gukovskaya AS, Gukovsky I. (2012) Autophagy and pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G993–G1003.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fortunato F, et al. (2009) Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology. 137:350–60, 360 e1–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Grasso D, et al. (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J. Biol. Chem. 286:8308–24.CrossRefPubMedGoogle Scholar
  72. 72.
    Ropolo A, et al. (2007) The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J. Biol. Chem. 282:37124–33.CrossRefPubMedGoogle Scholar
  73. 73.
    Molejon MI, et al. (2013) The VMP1-Beclin 1 interaction regulates autophagy induction. Sci. Rep. 3:1055.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kang R, Zeh HJ, Lotze MT, Tang D. (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18:571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ohmuraya M, et al. (2012) Role of intrapancreatic SPINK1/Spink3 expression in the development of pancreatitis. Front Physiol. 3:126.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Linkermann A, Green DR. (2014) Necroptosis. N. Engl. J. Med. 370:455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell. Biol. 11:700–14.CrossRefPubMedGoogle Scholar
  78. 78.
    Sun L, et al. (2012) Mixed lineage kinase domainlike protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–27.CrossRefGoogle Scholar
  79. 79.
    Degterev A, et al. (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1:112–9.CrossRefPubMedGoogle Scholar
  80. 80.
    He S, et al. (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–11.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhang DW, et al. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–6.CrossRefGoogle Scholar
  82. 82.
    Duprez L, et al. (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 35:908–18.CrossRefPubMedGoogle Scholar
  83. 83.
    Kaczmarek A, Vandenabeele P, Krysko DV. (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 38:209–23.CrossRefGoogle Scholar
  84. 84.
    Linkermann A, et al. (2012) Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock. Mol. Med. 18:577–86.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Brennan MA, Cookson BT. (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38:31–40.CrossRefPubMedGoogle Scholar
  86. 86.
    Bergsbaken T, Fink SL, Cookson BT. (2009) Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7:99–109.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Huang H, et al. (2013) Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J. Immunol. 191:2665–79.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Xu J, et al. (2014) Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ. 21:1229–39.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Huang H, et al. (2011) Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 54:999–1008.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Schroder K, Tschopp J. (2010) The inflammasomes. Cell. 140:821–32.CrossRefGoogle Scholar
  91. 91.
    Ivanov S, et al. (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 110:1970–81.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Yang H, et al. (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl. Acad. Sci. U. S. A. 107:11942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Liu L, et al. (2014) HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE. Biochem. Biophys. Res. Commun. 450:851–6.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Rathinam VA, Vanaja SK, Fitzgerald KA. (2012) Regulation of inflammasome signaling. Nat. Immunol. 13:333–2.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kang R, Tang D. (2012) PKR-dependent inflammatory signals. Sci. Signal. 5:pe47.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Krysko DV, et al. (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32:157–64.CrossRefPubMedGoogle Scholar
  97. 97.
    Kang R, et al. (2014) The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene. 33:567–77.CrossRefPubMedGoogle Scholar
  98. 98.
    Lange SS, Mitchell DL, Vasquez KM. (2008) High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc. Natl. Acad. Sci. U. S. A. 105:10320–5.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Tang D, et al. (2010) Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190:881–92.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wang H, et al. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science. 285:248–51.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Scaffidi P, Misteli T, Bianchi ME. (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 418:191–5.CrossRefGoogle Scholar
  102. 102.
    Kazama H, et al. (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 29:21–32.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lu B, et al. (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 488:670–4.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Tang D, et al. (2010) Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190:881–892.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kang R, et al. (2013) HMGB1 in cancer: good, bad, or both? Clin, Cancer Res. 19:4046–57.CrossRefGoogle Scholar
  106. 106.
    Venereau E, et al. (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209:1519–28.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Tang D, et al. (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene. 29:5299–310.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Tang D, Billiar TA, Lotze MT. (2012) A Janus tale of two active HMGB1 redox states. Mol. Med. 18:1360–2.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kang R, et al. (2014) HMGB1 in health and disease. Mol. Aspects Med. 2014, July 8 [Epub ahead of print].Google Scholar
  110. 110.
    Yasuda T, et al. (2006) Significant increase of serum high-mobility group box chromosomal protein 1 levels in patients with severe acute pancreatitis. Pancreas. 33:359–63.CrossRefPubMedGoogle Scholar
  111. 111.
    Yang ZY, et al. (2008) Delayed ethyl pyruvate therapy attenuates experimental severe acute pancreatitis via reduced serum high mobility group box 1 levels in rats. World J. Gastroenterol. 14:4546–50.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Yuan H, et al. (2009) Protective effect of HMGB1 a box on organ injury of acute pancreatitis in mice. Pancreas. 38:143–8.CrossRefPubMedGoogle Scholar
  113. 113.
    Sawa H, et al. (2006) Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J. Gastroenterol. 12:7666–70.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Zhang ZW, et al. (2010) Antioxidant inhibits HMGB1 expression and reduces pancreas injury in rats with severe acute pancreatitis. Dig. Dis. Sci. 55:2529–36.CrossRefPubMedGoogle Scholar
  115. 115.
    Hagiwara S, et al. (2009) Antithrombin III prevents cerulein-induced acute pancreatitis in rats. Pancreas. 38:746–51.CrossRefPubMedGoogle Scholar
  116. 116.
    Hagiwara S, et al. (2009) Danaparoid sodium prevents cerulein-induced acute pancreatitis in rats. Shock. 32:94–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Tang D, et al. (2014) High mobility group box 1 (HMGB1) phenotypic role revealed with stress. Mol. Med. 2014;20:359–62.Google Scholar
  118. 118.
    Kaushik S, Cuervo AM. (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22:407–17.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Tang D, et al. (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab. 13:701–11.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Li S, et al. (2011) Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. Am. J. Pathol. 179:2822–34.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Ye Z, Gan YH. (2007) Flagellin contamination of recombinant heat shock protein 70 is responsible for its activity on T cells. J. Biol. Chem. 282:4479–84.CrossRefPubMedGoogle Scholar
  122. 122.
    Gao B, Tsan MF. (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278:174–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Tashiro M, et al. (2001) Arginine induced acute pancreatitis alters the actin cytoskeleton and increases heat shock protein expression in rat pancreatic acinar cells. Gut. 49:241–50.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Ethridge RT, et al. (2000) Acute pancreatitis results in induction of heat shock proteins 70 and 27 and heat shock factor-1. Pancreas. 21:248–56.CrossRefPubMedGoogle Scholar
  125. 125.
    Feng JY, Li YY. (2010) Alteration and role of heat shock proteins in acute pancreatitis. J. Dig. Dis. 11:277–83.CrossRefPubMedGoogle Scholar
  126. 126.
    Lee HS, et al. (2000) Water immersion stress induces heat shock protein 60 expression and protects against pancreatitis in rats. Gastroenterology. 119:220–9.CrossRefPubMedGoogle Scholar
  127. 127.
    Kubisch C, et al. (2004) Overexpression of heat shock protein Hsp27 protects against cerulein-induced pancreatitis. Gastroenterology. 127:275–86.CrossRefPubMedGoogle Scholar
  128. 128.
    Mahajan UM, et al. (2011) Alteration in inflammatory/apoptotic pathway and histone modifications by nordihydroguaiaretic acid prevents acute pancreatitis in Swiss albino mice. Apoptosis. 16:1138–49.CrossRefPubMedGoogle Scholar
  129. 129.
    Kim JN, et al. (2011) Heat shock proteins and autophagy in rats with cerulein-induced acute pancreatitis. Gut Liver. 5:513–20.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Song JM, et al. (2008) Extracellular heat-shock protein 70 aggravates cerulein-induced pancreatitis through toll-like receptor-4 in mice. Chin. Med. J. (Engl). 121:1420–5.Google Scholar
  131. 131.
    Liao WC, et al. (2009) Serum heat shock protein 27 is increased in chronic pancreatitis and pancreatic carcinoma. Pancreas. 38:422–6.CrossRefPubMedGoogle Scholar
  132. 132.
    Pakendorf B, Stoneking M. (2005) Mitochondrial DNA and human evolution. Annu. Rev. Genomics Hum. Genet. 6:165–83.CrossRefPubMedGoogle Scholar
  133. 133.
    Sharma S, Fitzgerald KA. (2011) Innate immune sensing of DNA. PLoS. Pathog. 7:e1001310.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Gornik O, et al. (2011) Evaluation of cell-free DNA in plasma and serum as early predictors of severity in acute pancreatitis. Pancreas. 40:787–8.CrossRefPubMedGoogle Scholar
  135. 135.
    Kocsis AK, et al. (2009) Plasma concentrations of high-mobility group box protein 1, soluble receptor for advanced glycation end-products and circulating DNA in patients with acute pancreatitis. Pancreatology. 9:383–91.CrossRefPubMedGoogle Scholar
  136. 136.
    Gornik I, et al. (2009) Free serum DNA is an early predictor of severity in acute pancreatitis. Clin. Biochem. 42:38–43.CrossRefPubMedGoogle Scholar
  137. 137.
    Bagul A, et al. (2006) Quantitative analysis of plasma DNA in severe acute pancreatitis. JOP. 7:602–7.PubMedGoogle Scholar
  138. 138.
    Zeng YJ, et al. (2008) Toll-like receptor 9 is expressed in rat pancreas and is involved in cerulein-induced pancreatitis. Pancreas. 36:212–4.CrossRefPubMedGoogle Scholar
  139. 139.
    Tian J, et al. (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8:487–96.CrossRefPubMedGoogle Scholar
  140. 140.
    Julian MW, et al. (2012) Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA. J. Immunol. 189:433–43.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Park H, Boyington JC. (2010) The 1.5 A crystal structure of human receptor for advanced glycation endproducts (rage) ectodomains reveals unique features determining ligand binding. J. Biol. Chem. 285:40762–70.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Urbonaviciute V, et al. (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205:3007–18.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Campos EI, Reinberg D. (2009) Histones: annotating chromatin. Annu. Rev. Genet. 43:559–99.CrossRefPubMedGoogle Scholar
  144. 144.
    Xu J, et al. (2009) Extracellular histones are major mediators of death in sepsis. Nat. Med. 15:1318–21.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Xu J, et al. (2011) Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 187:2626–31.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Wu D, et al. (2002) Apoptotic release of histones from nucleosomes. J. Biol. Chem. 277:12001–8.CrossRefPubMedGoogle Scholar
  147. 147.
    Brinkmann V, et al. (2004) Neutrophil extracellular traps kill bacteria. Science. 303:1532–5.CrossRefGoogle Scholar
  148. 148.
    Allam R, Darisipudi MN, Tschopp J, Anders HJ. (2013) Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur. J. Immunol. 43:3336–42.CrossRefPubMedGoogle Scholar
  149. 149.
    Allam R, Kumar SV, Darisipudi MN, Anders HJ. (2014) Extracellular histones in tissue injury and inflammation. J. Mol. Med. 92:465–72.CrossRefPubMedGoogle Scholar
  150. 150.
    Chen R, Kang R, Fan XG, Tang D. (2014) Release and activity of histone in diseases. Cell Death Dis. 5:e1370.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Gordon JL. (1986) Extracellular ATP: effects, sources and fate. Biochem. J. 233:309–19.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Surprenant A, et al. (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 272:735–8.CrossRefGoogle Scholar
  153. 153.
    Chekeni FB, et al. (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature. 467:863–7.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Valera S, et al. (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature. 371:516–9.CrossRefPubMedGoogle Scholar
  155. 155.
    Feranchak AP, et al. (2010) Initiation of purinergic signaling by exocytosis of ATP-containing vesicles in liver epithelium. J. Biol. Chem. 285:8138–47.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Fader CM, Aguilera MO, Colombo MI. (2012) ATP is released from autophagic vesicles to the extracellular space in a VAMP7-dependent manner. Autophagy. 8:1741–56.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Criddle DN, et al. (2006) Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology. 130:781–93.CrossRefPubMedGoogle Scholar
  158. 158.
    Suadicani SO, Brosnan CF, Scemes E. (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J. Neurosci. 26:1378–85.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Awla D, Abdulla A, Regner S, Thorlacius H. (2011) TLR4 but not TLR2 regulates inflammation and tissue damage in acute pancreatitis induced by retrograde infusion of taurocholate. Inflamm. Res. 60:1093–8.CrossRefPubMedGoogle Scholar
  160. 160.
    Sharif R, et al. (2009) Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 58:813–9.CrossRefPubMedGoogle Scholar
  161. 161.
    Pastor CM, et al. (2004) Role of Toll-like receptor 4 on pancreatic and pulmonary injury in a mice model of acute pancreatitis associated with endotoxemia. Crit. Care Med. 32:1759–63.CrossRefPubMedGoogle Scholar
  162. 162.
    Yang L, et al. (2014) PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat. Commun. 2014; 5:4436.Google Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations