Molecular Medicine

, Volume 20, Issue 1, pp 313–328 | Cite as

Modulation of Poly(ADP-Ribose) Polymerase-1 (PARP-1)-Mediated Oxidative Cell Injury by Ring Finger Protein 146 (RNF146) in Cardiac Myocytes

  • Domokos Gerö
  • Petra Szoleczky
  • Athanasia Chatzianastasiou
  • Andreas Papapetropoulos
  • Csaba Szabo
Research Article


Poly(ADP-ribose) polymerase-1 (PARP-1) activation is a hallmark of oxidative stress-induced cellular injury that can lead to energetic failure and necrotic cell death via depleting the cellular nicotinamide adenine dinucleotide (NAD+) and ATP pools. Pharmacological PARP-1 inhibition or genetic PARP-1 deficiency exert protective effects in multiple models of cardiomyocyte injury. However, the connection between nuclear PARP-1 activation and depletion of the cytoplasmic and mitochondrial energy pools is poorly understood. By using cultured rat cardiomyocytes, here we report that ring finger protein 146 (RNF146), a cytoplasmic E3-ubiquitin ligase, acts as a direct interactor of PARP-1. Overexpression of RNF146 exerts protection against oxidant-induced cell death, whereas PARP-1-mediated cellular injury is augmented after RNF146 silencing. RNF146 translocates to the nucleus upon PARP-1 activation, triggering the exit of PARP-1 from the nucleus, followed by rapid degradation of both proteins. PARP-1 and RNF146 degradation occurs in the early phase of myocardial ischemia-reperfusion injury; it precedes the induction of heat shock protein expression. Taken together, PARP-1 release from the nucleus and its rapid degradation represent newly identified steps of the necrotic cell death program induced by oxidative stress. These steps are controlled by the ubiquitin-proteasome pathway protein RNF146. The current results shed new light on the mechanism of necrotic cell death. RNF146 may represent a distinct target for experimental therapeutic intervention of oxidant-mediated cardiac injury.



This work was supported by the National Institutes of Health (to C Szabo) (R01GM056687).


  1. 1.
    Jagtap P, Szabo C. (2010) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 4:421–40.CrossRefGoogle Scholar
  2. 2.
    Curtin NJ, Szabo C. (2013) Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med. 34:1217–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Zingarelli B, Cuzzocrea S, Zsengellér Z, Salzman AL, Szabo C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. Res. 36:205–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Zingarelli B, Salzman AL, Szabo C. (1998) Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83:85–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Yang Z, Zingarelli B, Szabo C. (2000) Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock. 13:60–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Pacher P, Szabo C. (2008) Role of the peroxynitritepoly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173:2–13.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Krietsch J, et al. (2013) Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol. Aspects Med. 34:1066–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Fatokun AA, Dawson VL, Dawson TM. (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 171:2000–16.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Andrabi SA, et al. (2011) Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat. Med. 17:692–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kang HC, et al. (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc. Natl. Acad. Sci. U. S. A. 108:14103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gero D, et al. (2013) Cell-based screening identifies paroxetine as an inhibitor of diabetic endothelial dysfunction. Diabetes. 62:953–64.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gero D, et al. (2007) Oxidant-induced cardiomyocyte injury: identification of the cytoprotective effect of a dopamine 1 receptor agonist using a cell-based high-throughput assay. Int. J. Mol. Med. 20:749–61.PubMedGoogle Scholar
  13. 13.
    Szoleczky P, et al. (2012) Identification of agents that reduce renal hypoxia-reoxygenation injury using cell-based screening: purine nucleosides are alternative energy sources in LLC-PK1 cells during hypoxia. Arch. Biochem. Biophys. 517:53–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Szabo G, et al. (2011) Cardioprotective effects of hydrogen sulfide. Nitric Oxide. 25:201–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang Z, Zingarelli B, Szabo C. (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation. 101:1019–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Radovits T, et al. (2007) Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur. J. Pharmacol. 564:158–66.CrossRefPubMedGoogle Scholar
  17. 17.
    Radovits T, et al. (2007) Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp. Gerontol. 42:676–85.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    von Rotz RC, Kins S, Hipfel R, von der Kammer H, Nitsch RM. (2005) The novel cytosolic RING finger protein dactylidin is up-regulated in brains of patients with Alzheimer’s disease. Eur. J. Neurosci. 21:1289–98.CrossRefGoogle Scholar
  19. 19.
    Jagtap P, et al. (2002) Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med. 30:1071–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Modis K, Gero D, Nagy N, Szoleczky P, Toth ZD, Szabo C. (2009) Cytoprotective effects of adenosine and inosine in an in vitro model of acute tubular necrosis. Br. J. Pharmacol. 158:1565–78.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Modis K, et al. (2012) Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress. Biochem. Pharmacol. 83:633–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Gero D, Szabo C. (2008) Poly(ADP-ribose) polymerase: a new therapeutic target? Curr. Opin. Anaesthesiol. 21:111–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Nikiforov A, Dolle C, Niere M, Ziegler M. (2012) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem. 286:21767–78.CrossRefGoogle Scholar
  24. 24.
    Berger F, Lau C, Dahlmann M, Ziegler M. (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280:36334–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Alano CC, et al. (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci. 30:2967–78.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Du L, et al. (2003) Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J. Biol. Chem. 278:18426–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Lai Y, et al. (2008) Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J. Neurochem. 104:1700–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Rossi MN, et al. (2009) Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J. Biol. Chem. 284:31616–24.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhou ZD, Chan CH, Xiao ZC, Tan EK. (2011) Ring finger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh. Migr. 5:463–71.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang Y, et al. (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat. Cell Biol. 13:623–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Szabo C, Zingarelli B, O’Connor M, Salzman AL. (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. U. S. A. 93:1753–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Virág L, Salzman AL, Szabo C. (1998) Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161:3753–9.PubMedGoogle Scholar
  33. 33.
    Ha HC, Snyder SH. (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl. Acad. Sci. U. S. A. 96:13978–82.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Szabo C. (2005) Mechanisms of cell necrosis. Crit. Care Med. 33 (12 Suppl.):S530–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ. (2013) Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med. 34:1153–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Virág L, et al. (1998) Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunology. 94:345–55.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Herceg Z, Wang ZQ. (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol. Cell. Biol. 19:5124–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Soldani C, Scovassi AI. (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 7:321–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, et al. (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4:ra20.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell. Biol. 15:135–47.CrossRefGoogle Scholar
  41. 41.
    Zhang X, et al. (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J. Neurochem. 82:181–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Komjáti K, et al. (2004) Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. Int. J. Mol. Med. 13:373–82.PubMedGoogle Scholar
  43. 43.
    Chen M, Zsengellér Z, Xiao CY, Szabo C. (2004) Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly(ADP-ribose) polymerase-1. Cardiovasc. Res. 63:682–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Xiao CY, Chen M, Zsengellér Z, Szabo C. (2004) Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor. J. Pharmacol. Exp. Ther. 310:498–504.CrossRefPubMedGoogle Scholar
  45. 45.
    Tóth-Zsámboki E, et al. (2006) Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes. Mol. Med. 12:221–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Callow MG, et al. (2011) Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One. 6:e22595.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhou ZD, Chan CH, Xiao ZC, Tan EK. (2011) Ring finger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh. Migr. 5:463–71.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang Z, et al. (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 26:235–40.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang T, Simbulan-Rosenthal CM, Smulson ME, Chock PB, Yang DC. (2008) Polyubiquitylation of PARP-1 through ubiquitin K48 is modulated by activated DNA, NAD+, and dipeptides. J. Cell. Biochem. 104:318–28.CrossRefPubMedGoogle Scholar
  50. 50.
    Mashimo M, Kato J, Moss J. (2013) ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 110:18964–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yu X, Kem DC. (2010) Proteasome inhibition during myocardial infarction. Cardiovasc. Res. 85:312–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Divald A, Powell SR. (2006) Proteasome mediates removal of proteins oxidized during myocardial ischemia. Free Radic. Biol. Med. 40:156–64.CrossRefPubMedGoogle Scholar
  53. 53.
    Gao Y, et al. (2014) Overexpression of RNF146 in non-small cell lung cancer enhances proliferation and invasion of tumors through the Wnt/β-catenin signaling pathway. PLoS One. 9:e85377.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Domokos Gerö
    • 1
  • Petra Szoleczky
    • 1
  • Athanasia Chatzianastasiou
    • 2
  • Andreas Papapetropoulos
    • 2
  • Csaba Szabo
    • 1
  1. 1.Department of AnesthesiologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Faculty of PharmacyUniversity of AthensAthensGreece

Personalised recommendations