Advertisement

Molecular Medicine

, Volume 20, Issue 1, pp 381–389 | Cite as

A Journey in Science: Medical Scientist in Translation

  • Göran K. Hansson
Anthony Cerami Award in Translational Medicine

Abstract

Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed and treated. In this volume, the Cerami Award Monograph is by Göran K Hansson, MD, PhD, Karolinska Institute. A visionary in the field of cardiovascular research, this is the story of Dr. Hansson’s scientific journey.

Notes

Acknowledgments

I am grateful to all present and former fellows and students in our lab for making it such a great place to work. I am also indebted to many colleagues for stimulating discussions and collaboration, in the Center for Molecular Medicine at Karolinska Institute and all over the world. I gratefully acknowledge the support of the funding agencies that made our research possible. Our work is currently supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, the European Commission and the Foundation for Strategic Research. Finally, I thank my wife Margareta and our sons Emil and Axel for a wonderful life together.

References

  1. 1.
    Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK. (1985) Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest. 76:125–31.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 6:131–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Stemme S, et al. (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl. Acad. Sci. U. S. A. 92:3893–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hermansson A, et al. (2010) Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207:1081–93.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hansson GK, Hermansson A. (2011) The immune system in atherosclerosis. Nat. Immunol. 12:204–12.CrossRefGoogle Scholar
  6. 6.
    Jonasson L, Holm J, Hansson GK. (1988) Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl. Acad. Sci. U. S. A. 85:2303–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marx SO, Jayaraman T, Go LO, Marks AR. (1995) Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ. Res. 76:412–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Warner S, Auger KR, Libby P. (1987) Interleukin-1 induces interleukin-1. II. Recombinant human interleukin-1 induces interleukin-1 production by adult human vascular endothelial cells. J. Immunol. 139:1911–7.PubMedGoogle Scholar
  9. 9.
    Pober JS, Collins T, Gimbrone MA, Libby P, Reiss CS. (1986) Inducible expression of class II major histocompatibility complex antigens and the immunogenicity of vascular endothelium. Transplant. 41:141–6.CrossRefGoogle Scholar
  10. 10.
    Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. (1987) Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 84:9238–42.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hansson GK, Holm J, Jonasson L. (1989) Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135:169–75.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G. (1993) Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J. Clin. Invest. 91:2693–702.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hansson GK, Jonasson L, Seifert PS, Stemme S. (1989) Immune mechanisms in atherosclerosis. Arteriosclerosis. 9:567–78.CrossRefPubMedGoogle Scholar
  14. 14.
    Libby P, Hansson GK. (1991) Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab. Invest. 64:5–15.PubMedGoogle Scholar
  15. 15.
    Liuzzo G, et al. (1994) The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N. Engl. J. Med. 331:417–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Liuzzo G, et al. (1996) Plasma protein acute-phase response in unstable angina is not induced by ischemic injury. Circulation. 94:2373–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342:836–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 89:4471–5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Plump AS, et al. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 71:343–53.CrossRefGoogle Scholar
  20. 20.
    Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS. (1994) The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl. Acad. Sci. U. S. A. 91:4431–5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Folkersen L, et al. (2012) Prediction of ischemic events on the basis of transcriptomic and genomic profiling in patients undergoing carotid endarterectomy. Mol. Med. 18:669–75.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nicoletti A, Kaveri S, Caligiuri G, Bariety J, Hansson GK. (1998) Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J. Clin. Invest. 102:910–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 394:200–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Caligiuri G, Nicoletti A, Poirier B, Hansson GK. (2002) Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109:745–53.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Palinski W, Miller E, Witztum JL. (1995) Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl. Acad. Sci. U. S. A. 92:821–5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ameli S, et al. (1996) Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16:1074–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Ait-Oufella H, et al. (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12:178–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Klingenberg R, et al. (2013) Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123:1323–34.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Geng YJ, Almqvist M, Hansson GK. (1994) cDNA cloning and expression of inducible nitric oxide synthase from rat vascular smooth muscle cells. Biochim. Biophys. Acta. 1218:421–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Geng YJ, Hansson GK, Holme E. (1992) Interferon-γ and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ. Res. 71:1268–76.CrossRefPubMedGoogle Scholar
  31. 31.
    Yan Z, Hansson GK. (1998) Overexpression of inducible nitric oxide synthase by neointimal smooth muscle cells. Circ. Res. 82:21–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 105:1158–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Valen G, Yan ZQ, Hansson GK. (2001) Nuclear factor kappa-B and the heart. J. Am. Coll. Cardiol. 38:307–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Paulsson G, Zhou X, Törnquist E, Hansson GK. (2000) Oligoclonal T cell expansions in atherosclerotic lesions of apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20:10–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Back M, et al. (2005) Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc. Natl. Acad. Sci. U. S. A. 102:17501–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhou X, Paulsson G, Stemme S, Hansson GK. (1998) Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Invest. 101:1717–25.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Robertson AK, et al. (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112:1342–50.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hermansson A, et al. (2011) Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation. 123:1083–91.CrossRefPubMedGoogle Scholar
  39. 39.
    Gistera A, et al. (2013) Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl. Med. 5:196ra100.CrossRefPubMedGoogle Scholar
  40. 40.
    Center of Excellence for Research on Inflammation and Cardiovascular disease (CERIC). Welcome to CERIC [Internet]. c2014. Stockholm (Sweden): CERIC; [cited 2014 Jun 26]. Available from: https://doi.org/www.ceric.se.
  41. 41.
    Nobel Assembly at Karolinska Institutet [Internet]. c2014. [cited 2014 Jun 26]. Available from: https://doi.org/www.nobelprizemedicine.org.
  42. 42.
    Göran K, Jonasson L. (2009) The discovery of cellular immunity in the atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 29:1714–1717.CrossRefGoogle Scholar
  43. 43.
    Hansson GK. (2005) Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352:1685–95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  1. 1.Karolinska InstituteDepartment of Medicine Solna and Center for Molecular Medicine at Karolinska University Hospital, L8:03StockholmSweden

Personalised recommendations