Molecular Medicine

, Volume 19, Issue 1, pp 399–408 | Cite as

Effects of Erythropoietin in Murine-Induced Pluripotent Cell-Derived Panneural Progenitor Cells

  • Nils Offen
  • Johannes Flemming
  • Hares Kamawal
  • Ruhel Ahmad
  • Wanja Wolber
  • Christian Geis
  • Holm Zaehres
  • Hans R. Schöler
  • Hannelore Ehrenreich
  • Albrecht M. Müller
  • Anna-Leena Sirén
Research Article


Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed functional EPOR signaling. In proliferating cultures, EPO (0.1–3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of γ-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis.



We thank Barbara Gado for expert technical assistance, and Christine Hofstetter and Daniela Zdzieblo, for help with the FACS analysis. This study was supported by the Interdisciplinary Center for Clinical Research (IZKF), University of Würzburg (TP D103).

Supplementary material

10020_2013_1901399_MOESM1_ESM.pdf (84 kb)
Supplementary material, approximately 84.0 KB.


  1. 1.
    Kim JB, et al. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 454:646–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Robinton DA, Daley GQ. (2012) The promise of induced pluripotent stem cells in research and therapy. Nature. 481:295–305.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Takahashi K, Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–76.CrossRefGoogle Scholar
  4. 4.
    Hu BY, et al. (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. U. S. A. 107:4335–40.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lohle M, et al. (2012) Differentiation efficiency of induced pluripotent stem cells depends on the number of reprogramming factors. Stem Cells. 30:570–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Salewski RP, et al. (2013) The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev. 22:383–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim K, et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature. 467:285–90.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lister R, et al. (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 471:68–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bar-Nur O, Russ HA, Efrat S, Benvenisty N. (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 9:17–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Hu QR, Friedrich AM, Johnson LV, Clegg DO. (2010) Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells. 28:1981–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Mikkelsen TS, et al. (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature. 454:49–55,794.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wernig M, et al. (2008) Neurons derived from re-programmed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 105:5856–61.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kawai H, et al. (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J. Cereb. Blood Flow Metab. 30:1487–93CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mak SK, et al. (2012) Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage. Stem Cells Int. 2012:140427.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Parsons XH. (2012) MicroRNA profiling reveals distinct mechanisms governing cardiac and neural lineage-specification of pluripotent human embryonic stem cells. J. Stem Cell Res. Ther. 2.Google Scholar
  16. 16.
    Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 7:150–61.CrossRefPubMedGoogle Scholar
  17. 17.
    Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 5:237–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Bae D, et al. (2012) Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells. Stem Cells Dev. 21:1344–55.CrossRefPubMedGoogle Scholar
  19. 19.
    Jelkmann W. (2004) Molecular biology of erythropoietin. Intern. Med. 43:649–59.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bernaudin M, et al. (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia. 30:271–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Byts N, et al. (2008) Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Differ. 15:783–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Digicaylioglu M, Lipton SA. (2001) Erythropoietin-mediated neuroprotection involves crosstalk between Jak2 and NF-kappaB signalling cascades. Nature. 412:641–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Sirén AL, et al. (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. U. S. A. 98:4044–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brines M, Cerami A. (2005) Emerging biological roles for erythropoietin in the nervous system. Nat. Rev. Neurosci. 6:484–94.CrossRefGoogle Scholar
  25. 25.
    Sirén AL, Fasshauer T, Bartels C, Ehrenreich H. (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics. 6:108–27.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cervellini I, et al. (2013) Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor. Mol. Med. 19:223–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sargin D, Hassouna I, Sperling S, Sirén AL, Ehrenreich H. (2009) Uncoupling of neurodegeneration and gliosis in a murine model of juvenile cortical lesion. Glia. 57:693–702.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang G, et al. (2011) Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy. PLoS One. 6:e27067.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Savino C, et al. (2006) Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. J. Neuroimmunol. 172:27–37.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tsai PT, et al. (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J. Neurosci. 26:1269–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 35:1732–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Y, et al. (2012) Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury. Exp. Neurol. 235:336–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gonzalez FF, et al. (2013) Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 44:753–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT. (2007) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J. Biol. Chem. 282:25875–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Shingo T, Sorokan ST, Shimazaki T, Weiss S. (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21:9733–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Eckardt S, et al. (2007) Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes. Dev. 21:409–19.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ying QL, Stavridis M, Griffiths D, Li M, Smith A. (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21:183–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Schneider CA, Rasband WS, Eliceiri KW. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9:671–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Team RDC. (2009) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 409 pp.Google Scholar
  40. 40.
    Gray PA. (2008) Transcription factors and the genetic organization of brain stem respiratory neurons. J. Appl. Physiol. 104:1513–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Lopez-Bendito G, Molnar Z. (2003) Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4:276–89.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang Y, et al. (2010) Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J. Neurosci. 30:5334–45.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Boulting GL, et al. (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29:279–86.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kawasaki H, et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 28:31–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu H, Zhang SC. (2011) Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell. Mol. Life Sci. 68:3995–4008.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Peljto M, Wichterle H. (2011) Programming embryonic stem cells to neuronal subtypes. Curr. Opin. Neurobiol. 21:43–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Conti L, et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Song HJ, Stevens CF, Gage FH. (2002) Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci. 5:438–45.CrossRefPubMedGoogle Scholar
  49. 49.
    Koehler KR, et al. (2012) Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells. BMC Neurosci. 12:82.CrossRefGoogle Scholar
  50. 50.
    Wernig M, et al. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 448:318–24.CrossRefPubMedGoogle Scholar
  51. 51.
    Tsuji O, et al. (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. U. S. A. 107:12704–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bock C, et al. (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 144:439–52.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kaichi S, et al. (2010) Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovasc. Res. 88:314–23.CrossRefPubMedGoogle Scholar
  54. 54.
    Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17:5820–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Qian X, Davis AA, Goderie SK, Temple S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron. 18:81–93.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang L, et al. (2007) The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J. Biol. Chem. 282:32462–70.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang L, et al. (2006) Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells. J. Cereb. Blood Flow Metab. 26:556–64.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang Y, et al. (2010) Erythropoietin promotes spinal cord-derived neural progenitor cell proliferation by regulating cell cycle. Neuroscience. 167:750–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Torroglosa A, et al. (2007) Nitric oxide decreases subventricular zone stem cell proliferation by inhibition of epidermal growth factor receptor and phosphoinositide-3-kinase/Akt pathway. Stem Cells. 25:88–97.CrossRefPubMedGoogle Scholar
  60. 60.
    Kilic E, et al. (2005) Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. Faseb. J. 19:2026–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Oh DH, Lee IY, Choi M, Kim SH, Son H. (2012) Comparison of neurite outgrowth induced by erythropoietin (EPO) and carbamylated erythropoietin (CEPO) in hippocampal neural progenitor cells. Korean J. Physiol. Pharmacol. 16:281–5.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Nils Offen
    • 1
  • Johannes Flemming
    • 1
  • Hares Kamawal
    • 1
  • Ruhel Ahmad
    • 2
  • Wanja Wolber
    • 1
  • Christian Geis
    • 3
    • 4
  • Holm Zaehres
    • 5
  • Hans R. Schöler
    • 5
  • Hannelore Ehrenreich
    • 6
  • Albrecht M. Müller
    • 2
  • Anna-Leena Sirén
    • 1
  1. 1.Department of Experimental NeurosurgeryUniversity of WürzburgWürzburgGermany
  2. 2.Center for Experimental Molecular Medicine (ZEMM)University of WürzburgWürzburgGermany
  3. 3.Department of NeurologyUniversity of WürzburgWürzburgGermany
  4. 4.Department of Neurology and Center for Sepsis Control and Care (CSCC)Jena University HospitalJenaGermany
  5. 5.Department of Cell and Developmental BiologyMax-Planck Institute for Molecular BiomedicineMünsterGermany
  6. 6.Clinical NeuroscienceMax Planck Institute of Experimental MedicineGöttingenGermany

Personalised recommendations