Molecular Medicine

, Volume 19, Issue 1, pp 161–169 | Cite as

Lupus Nephritis: Enigmas, Conflicting Models and an Emerging Concept

  • Natalya Seredkina
  • Johan van der Vlag
  • Jo Berden
  • Elin Mortensen
  • Ole Petter Rekvig
Review Article


Autoantibodies to components of chromatin, which include double-stranded DNA (dsDNA), histones and nucleosomes, are central in the pathogenesis of lupus nephritis. How anti-chromatin autoantibodies exert their nephritogenic activity, however, is controversial. One model assumes that autoantibodies initiate inflammation when they cross-react with intrinsic glomerular structures such as components of membranes, matrices or exposed nonchromatin ligands released from cells. Another model suggests glomerular deposition of autoantibodies in complex with chromatin, thereby inducing classic immune complex-mediated tissue damage. Recent data suggest acquired error of renal chromatin degradation due to the loss of renal DNasel enzyme activity is an important contributing factor to the development of lupus nephritis in lupus-prone (NZBxNZW)F1 mice and in patients with lupus nephritis. Down-regulation of DNasel expression results in reduced chromatin fragmentation and in deposition of extracellular chromatin-IgG complexes in glomerular basement membranes in individuals who produce IgG anti-chromatin autoantibodies. The main focus of the present review is to discuss whether exposed chromatin fragments in glomeruli are targeted by potentially nephritogenic anti-dsDNA autoantibodies or if the nephritogenic activity of these autoantibodies is explained by cross-reaction with intrinsic glomerular constituents or if both models coexist in diseased kidneys. In addition, the role of silencing of the renal DNasel gene and the biological consequences of reduced chromatin fragmentation in nephritic kidneys are discussed.



This study was supported by the Northern Norway Regional Health Authority Medical Research Program (grants SFP-100-04 and SFP-101-04), the Dutch Arthritis Association (grant 09-1-308) and the University of Tromsø as milieu support given to OP Rekvig.


  1. 1.
    Ceppellini R, Polli E, Celada F. (1957) A DNA-reacting factor in serum of a patient with lupus erythematosus diffusus. Proc. Soc. Exp. Biol. Med. 96:572–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Robbins WC, Holman HR, Deicher H, Kungel HG. (1957) Complement fixation with cell nuclei and DNA in lupus erythematosus. Proc. Soc. Exp. Biol. Med. 96:575–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Seligmann M. (1957) Demonstration in the blood of patients with disseminated lupus erythematosus a substance determining a precipitation reaction with desoxyribonucleic acid [in French]. C. R. Hebd. Seances Acad. Sci. 245:243–5.PubMedGoogle Scholar
  4. 4.
    Miescher P, Strassle R. (1957) New serological methods for the detection of the L.E. factor. Vox Sang 2:283–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Izui S, Lambert PH, Fournie GJ, Turler H, Miescher PA. (1977) Features of systemic lupus erythematosus in mice injected with bacterial lipopolysaccharides: identificantion of circulating DNA and renal localization of DNA-anti-DNA complexes. J. Exp. Med. 145:1115–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Izui S, Lambert PH, Miescher PA. (1976) In vitro demonstration of a particular affinity of glomerular basement membrane and collagen for DNA: a possible basis for a local formation of DNA-anti-DNA complexes in systemic lupus erythematosus. J. Exp. Med. 144:428–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Khalil M, Spatz L, Diamond B. (1999) Anti-DNA antibodies. In Systemic Lupus Erythematosus. Lahita RG, Ed. Academic Press, San Diego, CA, pp. 197–217.Google Scholar
  8. 8.
    Hahn BH. (1998) Antibodies to DNA. N. Engl. J. Med. 338:1359–68.CrossRefPubMedGoogle Scholar
  9. 9.
    Xie C, Liang Z, Chang S, Mohan C. (2003) Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum. 48:2343–52.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kalaaji M, Sturfelt G, Mjelle JE, Nossent H, Rekvig OP. (2006) Critical comparative analyses of anti-alpha-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum. 54:914–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Bruggen MC, Kramers C, Hylkema MN, Smeenk RJ, Berden JH. (1996) Significance of anti-nuclear and anti-extracellular matrix autoantibodies for albuminuria in murine lupus nephritis; a longitudinal study on plasma and glomerular eluates in MRL/l mice. Clin. Exp. Immunol. 105:132–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Dang H, Harbeck RJ. (1984) The in vivo and in vitro glomerular deposition of isolated anti-double-stranded-DNA antibodies in NZB/W mice. Clin. Immunol. Immunopathol. 30:265–78.CrossRefPubMedGoogle Scholar
  13. 13.
    Dang H, Harbeck RJ. (1982) A comparison of anti-DNA antibodies from serum and kidney eluates of NZB x NZW F1 mice. J. Clin. Lab. Immunol. 9:139–45.PubMedGoogle Scholar
  14. 14.
    Winfield JB, Faiferman I, Koffler D. (1977) Avidity of anti-DNA antibodies in serum and IgG glomerular eluates from patients with systemic lupus erythematosus: association of high avidity antinative DNA antibody with glomerulonephritis. J. Clin. Invest. 59:90–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mortensen ES, Rekvig OP. (2009) Nephritogenic potential of anti-DNA antibodies against necrotic nucleosomes. J. Am. Soc. Nephrol. 20:696–704.CrossRefPubMedGoogle Scholar
  16. 16.
    Jang YJ, Stollar BD. (2003) Anti-DNA antibodies: aspects of structure and pathogenicity. Cell. Mol. Life Sci. 60:309–20.CrossRefPubMedGoogle Scholar
  17. 17.
    van der Vlag J, Berden JH. (2011) Lupus nephritis: role of antinucleosome autoantibodies. Semin. Nephrol. 31:376–89.CrossRefPubMedGoogle Scholar
  18. 18.
    Munoz LE, et al. (2009) Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis Rheum. 60:1733–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Kruse K, et al. (2010) Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis. 15:1098–113CrossRefPubMedGoogle Scholar
  20. 20.
    Licht R, Dieker JW, Jacobs CW, Tax WJ, Berden JH. (2004) Decreased phagocytosis of apoptotic cells in diseased SLE mice. J. Autoimmun. 22:139–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Weening JJ, et al. (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. J. Am. Soc. Nephrol. 15:241–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Seredkina N, Zykova SN, Rekvig OP. (2009) Progression of murine lupus nephritis is linked to acquired renal Dnase1 deficiency and not to up-regulated apoptosis. Am. J. Pathol. 175:97–106.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seredkina S, Rekvig OP. (2011) Acquired loss of renal nuclease activity is restricted to DNaseI and is an organ-selective feature in murine lupus nephritis. Am. J. Pathol. 179:1120–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fenton K, et al. (2009) Anti-dsDNA antibodies promote initiation, and acquired loss of renal Dnase1 promotes progression of lupus nephritis in autoimmune (NZBxNZW)F1 mice. PLoS One. 4:e8474.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Basnakian AG, et al. (2005) Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J. Am. Soc. Nephrol. 16:697–702.CrossRefPubMedGoogle Scholar
  26. 26.
    Zykova SN, Seredkina N, Benjaminsen J, Rekvig OP. (2008) Reduced fragmentation of apoptotic chromatin is associated with nephritis in lupusprone (NZB × NZW)F(1) mice. Arthritis Rheum. 58:813–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Mostoslavsky G, et al. (2001) Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur. J. Immunol. 31:1221–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Z, et al. (2005) Cross-reactivity of human lupus anti-DNA antibodies with alpha-actinin and nephritogenic potential. Arthritis Rheum. 52:522–30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Amital H, et al. (2005) Treatment with a laminin-derived peptide suppresses lupus nephritis. J. Immunol. 175:5516–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Raz E, Ben Bassat H, Davidi T, Shlomai Z, Eilat D. (1993) Cross-reactions of anti-DNA autoantibodies with cell surface proteins. Eur. J. Immunol. 23:383–90.CrossRefPubMedGoogle Scholar
  31. 31.
    D’Andrea DM, Coupaye Gerard B, Kleyman TR, Foster MH, Madaio MP. (1996) Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. Kidney Int. 49:1214–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Krishnan MR, Wang C, Marion TN. (2012) Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int. 82:184–92.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Manson JJ, et al. (2009) Relationship between anti-dsDNA, anti-nucleosome and anti-alpha-actinin antibodies and markers of renal disease in patients with lupus nephritis: a prospective longitudinal study. Arthritis Res. Ther. 11:R154.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kalaaji M, et al. (2007) Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 71:664–72.CrossRefPubMedGoogle Scholar
  35. 35.
    Kalaaji M, Mortensen E, Jorgensen L, Olsen R, Rekvig OP. (2006) Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol. 168:1779–92.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schroeder K, Herrmann M, Winkler TH. (2013) The role of somatic hypermutation in the generation of pathogenic antibodies in SLE. Autoimmunity. 46:121–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Wellmann U, et al. (2005) The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl. Acad. Sci. U. S. A. 102:9258–63.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murphy K. (2011) Janeway’s Immunobiology. Garland Science, New York. Chapter 4, Antigen Recognition by B-cell and T-cell Receptors; pp. 127–156; Chapter 5, The Generation of Lymphocyte Antigen Receptors; pp. 157–200; Chapter 10, The Humoral Immune Response; pp. 387–428.Google Scholar
  39. 39.
    Starke C, et al. (2011) High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur. J. Immunol. 41:2107–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Radic M, Herrmann M, van der Vlag J, Rekvig OP. (2011) Regulatory and pathogenetic mechanisms of autoantibodies in SLE. Autoimmunity 44:349–56.CrossRefPubMedGoogle Scholar
  41. 41.
    Xu H, Li H, Suri-Payer E, Hardy RR, Weigert M. (1998) Regulation of anti-DNA B cells in recombination-activating gene-deficient mice. J. Exp. Med. 188:1247–54.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen C, et al. (1994) Deletion and editing of B cells that express antibodies to DNA. J. Immunol. 152:1970–82.PubMedGoogle Scholar
  43. 43.
    Marion TN, Krishnan MR, Desai DD, Jou NT, Tillman DM. (1997) Monoclonal anti-DNA antibodies: structure, specificity, and biology. Methods. 11:3–11.CrossRefPubMedGoogle Scholar
  44. 44.
    Carroll P, Stafford D, Schwartz RS, Stollar BD. (1985) Murine monoclonal anti-DNA autoantibodies bind to endogenous bacteria. J. Immunol. 135:1086–90.PubMedGoogle Scholar
  45. 45.
    Shoenfeld Y, et al. (1983) Polyspecificity of monoclonal lupus autoantibodies produced by humanhuman hybridomas. N. Engl. J. Med. 308:414–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Andrzejewski C Jr, Rauch J, Lafer E, Stollar BD, Schwartz RS. (1981) Antigen-binding diversity and idiotypic cross-reactions among hybridoma autoantibodies to DNA. J. Immunol. 126:226–31.PubMedGoogle Scholar
  47. 47.
    Lafer EM, et al. (1981) Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J. Exp. Med. 153:897–909.CrossRefPubMedGoogle Scholar
  48. 48.
    van Bavel CC, Fenton KA, Rekvig OP, van der Vlag J, Berden JH. (2008) Glomerular targets of nephritogenic autoantibodies in systemic lupus erythematosus. Arthritis Rheum. 58:1892–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Shlomchik M, et al. (1990) Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J. Exp. Med. 171:265–92.CrossRefPubMedGoogle Scholar
  50. 50.
    Marion TN, Krishnan MR, Steeves MA, Desai DD. (2003) Affinity maturation and autoimmunity to DNA. Curr. Dir. Autoimmun. 6:123–53.CrossRefPubMedGoogle Scholar
  51. 51.
    Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ. (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med. 189:1639–48.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li S, Holdsworth SR, Tipping PG. (1997) Antibody independent crescentic glomerulonephritis in mu chain deficient mice. Kidney Int. 51:672–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Waters ST, et al. (2004) Breaking tolerance to double stranded DNA, nucleosome, and other nuclear antigens is not required for the pathogenesis of lupus glomerulonephritis. J. Exp. Med. 199:255–64.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rovin BH, et al. (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64:1215–26.CrossRefPubMedGoogle Scholar
  55. 55.
    Ehrenstein MR, et al. (1995) Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int. 48:705–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Ravirajan CT, et al. (1998) Genetic, structural and functional properties of an IgG DNA-binding monoclonal antibody from a lupus patient with nephritis. Eur. J. Immunol. 28:339–50.CrossRefPubMedGoogle Scholar
  57. 57.
    Choi J, Kim ST, Craft J. (2012) The pathogenesis of systemic lupus erythematosus: an update. Curr. Opin. Immunol. 24:651–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zykova SN, Tveita AA, Rekvig OP. (2010) Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One. 10:5.Google Scholar
  59. 59.
    Berden JH, Licht R, Van Bruggen MC, Tax WJ. (1999) Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens. 8:299–306.CrossRefPubMedGoogle Scholar
  60. 60.
    Van Bruggen MC, et al. (1997) Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur. J. Immunol. 27:1564–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Samejima K, Earnshaw WC. (2005) Trashing the genome: the role of nucleases during apoptosis. Nat. Rev. Mol. Cell. Biol. 6:677–88.CrossRefPubMedGoogle Scholar
  62. 62.
    Kawane K, Nagata S. (2008) Nucleases in programmed cell death. Methods Enzymol. 442:271–87.CrossRefPubMedGoogle Scholar
  63. 63.
    Berden JH, Grootscholten C, Jurgen WC, van der Vlag J. (2002) Lupus nephritis: a nucleosome waste disposal defect? J. Nephrol. 15 Suppl 6: S1–10.PubMedGoogle Scholar
  64. 64.
    Macanovic M, et al. (1996) The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice: studies with recombinant murine DNase and with dexamethasone. Clin. Exp. Immunol. 106:243–52.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Davis JC Jr, et al. (1999) Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus. 8:68–76.CrossRefPubMedGoogle Scholar
  66. 66.
    Verthelyi D, Dybdal N, Elias KA, Klinman DM. (1998) DNAse treatment does not improve the survival of lupus prone (NZB x NZW)F1 mice. Lupus. 7:223–30.CrossRefPubMedGoogle Scholar
  67. 67.
    Napirei M, Ricken A, Eulitz D, Knoop H, Mannherz HG. (2004) Expression pattern of the deoxyribonuclease 1 gene: lessons from the Dnase1 knockout mouse. Biochem. J. 380:929–37.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Thiyagarajan D, et al. (2012) Silencing of renal DNaseI in murine lupus nephritis imposes exposure of large chromatin fragments and activation of toll like receptors and the Clec4e. PLoS One. 7:e34080.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Merrell MA, et al. (2006) Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res. 4:437–47.CrossRefPubMedGoogle Scholar
  70. 70.
    Lim EJ, et al. (2006) Activation of toll-like receptor-9 induces matrix metalloproteinase-9 expression through Akt and tumor necrosis factor-alpha signaling. FEBS Lett. 580:4533–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Han YP, Tuan TL, Wu H, Hughes M, Garner WL. (2001) TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J. Cell Sci. 114:131–9.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ben DD, Reznick AZ, Srouji S, Livne E. (2008) Exposure to pro-inflammatory cytokines upregulates MMP-9 synthesis by mesenchymal stem cells-derived osteoprogenitors. Histochem. Cell. Biol. 129:589–97.CrossRefGoogle Scholar
  73. 73.
    Triantafyllopoulou A, et al. (2010) Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl. Acad. Sci. U. S. A. 107:3012–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gaipl US, et al. (2006) Inefficient clearance of dying cells and autoreactivity. Curr. Top. Microbiol. Immunol. 305:161–76.PubMedGoogle Scholar
  75. 75.
    Brown GD. (2008) Sensing necrosis with Mincle. Nat. Immunol. 9:1099–100.CrossRefPubMedGoogle Scholar
  76. 76.
    Yamasaki S, et al. (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat. Immunol. 9:1179–88.CrossRefPubMedGoogle Scholar
  77. 77.
    Geijtenbeek TB, Gringhuis SI. (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9:465–79.CrossRefPubMedGoogle Scholar
  78. 78.
    Overall CM, Butler GS. (2007) Protease yoga: extreme flexibility of a matrix metalloproteinase. Structure. 15:1159–61.CrossRefPubMedGoogle Scholar
  79. 79.
    Walport MJ. (2002) Complement and systemic lupus erythematosus. Arthritis Res. 4 Suppl 3: S279–93.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    van Bavel CC, et al. (2011) Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann. Rheum. Dis. 70:201–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Dieker JW, et al. (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum. 56:1921–33.CrossRefPubMedGoogle Scholar
  82. 82.
    Fransen JH, et al. (2009) Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin-17. Arthritis Rheum. 60:2304–13.CrossRefPubMedGoogle Scholar
  83. 83.
    Svejstrup JQ. (2013) RNA polymerase II transcript elongation. Biochim. Biophys. Acta. 1829:1.CrossRefPubMedGoogle Scholar
  84. 84.
    Core LJ, Waterfall JJ, Lis JT. (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 322:1845–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hobson DJ, Wei W, Steinmetz LM, Svejstrup JQ. (2012) RNA polymerase II collision interrupts convergent transcription. Mol. Cell. 48:365–74.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kizer KO, et al. (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25:3305–16.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Xiao T, et al. (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17:654–63.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Shearwin KE, Callen BP, Egan JB. (2005) Transcriptional interference: a crash course. Trends Genet. 21:339–45.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Fismen S, et al. (2012) Impact of the tumor necrosis factor receptor-associated protein 1 (Trap1) on renal DNaseI shutdown and on progression of murine and human lupus nephritis. Am. J. Pathol. 182:688–700.CrossRefPubMedGoogle Scholar
  90. 90.
    Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 6:280–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Dieker JW, van der Vlag J, Berden JH. (2004) Deranged removal of apoptotic cells: its role in the genesis of lupus. Nephrol. Dial. Transplant. 19:282–5.CrossRefPubMedGoogle Scholar
  92. 92.
    Kaplan MJ. (2004) Apoptosis in systemic lupus erythematosus. Clin. Immunol. 112:210–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Al-Mayouf SM, et al. (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43:1186–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Baron WF, et al. (1998) Cloning and characterization of an actin-resistant DNase I-like endonuclease secreted by macrophages. Gene. 215:291–301.CrossRefPubMedGoogle Scholar
  95. 95.
    Bendiksen S, et al. (2008) Glomerular expression of large polyomavirus T antigen in binary tetoff regulated transgenic mice induces apoptosis, release of chromatin and initiates a lupus-like nephritis. Mol. Immunol. 45:728–39.CrossRefPubMedGoogle Scholar
  96. 96.
    Fenton KA, Mjelle JE, Jakobsen S, Olsen R, Rekvig OP. (2008) Renal expression of polyomavirus large T antigen is associated with nephritis in human systemic lupus erythematosus. Mol. Immunol. 45:3117–24.CrossRefPubMedGoogle Scholar
  97. 97.
    Fishman JA. (2002) BK virus nephropathy: polyomavirus adding insult to injury. N. Engl. J. Med. 347:527–30.CrossRefPubMedGoogle Scholar
  98. 98.
    Licht R, Van Bruggen MC, Oppers-Walgreen B, Rijke TP, Berden JH. (2001) Plasma levels of nucleosomes and nucleosome-autoantibody complexes in murine lupus: effects of disease progression and lipopolyssacharide administration. Arthritis Rheum. 44:1320–30.CrossRefPubMedGoogle Scholar
  99. 99.
    Fismen S, et al. (2009) Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis. Lupus. 18:597–607.CrossRefPubMedGoogle Scholar
  100. 100.
    Hedberg A, Fismen S, Fenton KA, Mortensen ES, Rekvig OP. (2010) Deposition of chromatin-IgG complexes in skin of nephritic MRL-lpr/lpr mice is associated with increased local matrix metalloprotease activities. Exp. Dermatol. 19:e265–74.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Natalya Seredkina
    • 1
  • Johan van der Vlag
    • 2
  • Jo Berden
    • 2
  • Elin Mortensen
    • 1
  • Ole Petter Rekvig
    • 1
  1. 1.Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health SciencesUniversity of TromsøTromsøNorway
  2. 2.Nephrology Research Laboratory, Department of NephrologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations