Advertisement

Molecular Medicine

, Volume 19, Issue 1, pp 26–29 | Cite as

Loss-of-Function Ferrochelatase and Gain-of-Function Erythroid-Specific 5-Aminolevulinate Synthase Mutations Causing Erythropoietic Protoporphyria and X-Linked Protoporphyria in North American Patients Reveal Novel Mutations and a High Prevalence of X-Linked Protoporphyria

  • Manisha Balwani
  • Dana Doheny
  • David F. Bishop
  • Irina Nazarenko
  • Makiko Yasuda
  • Harry A. Dailey
  • Karl E. Anderson
  • D. Montgomery Bissell
  • Joseph Bloomer
  • Herbert L. Bonkovsky
  • John D. Phillips
  • Lawrence Liu
  • Robert J. Desnick
  • The Porphyrias Consortium of the National Institutes of Health Rare Diseases Clinical Research Network
Research Article

Abstract

Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The EPP phenotype is characterized by acute, painful, cutaneous photosensitivity and elevated erythrocyte protoporphyrin levels. We report the FECH and ALAS2 mutations in 155 unrelated North American patients with the EPP phenotype. FECH sequencing and dosage analyses identified 140 patients with EPP: 134 with one loss-of-function allele and the common IVS3-48T>C low expression allele, three with two loss-of-function mutations and three with one loss-of-function mutation and two low expression alleles. There were 48 previously reported and 23 novel FECH mutations. The remaining 15 probands had ALAS2 gain-of-function mutations causing XLP: 13 with the previously reported deletion, c.1706_1709delAGTG, and two with novel mutations, c.1734delG and c.1642C>T(p.Q548X). Notably, XLP represented ~10% of EPP phenotype patients in North America, two to five times more than in Western Europe. XLP males had twofold higher erythrocyte protoporphyrin levels than EPP patients, predisposing to more severe photosensitivity and liver disease. Identification of XLP patients permits accurate diagnosis and counseling of at-risk relatives and asymptomatic heterozygotes.

Notes

Acknowledgments

The authors thank the Porphyrias Consortium coordinators for their assistance, Nicole Kelly for manuscript preparation and Jungmin Kim for technical assistance. This research was supported in part by grants from the American Porphyria Foundation and grants from the NIH, including a research grant (5 R01 DK026824) and a grant (1 U54 DK083909) for the Porphyrias Consortium of the NIH Rare Diseases Clinical Research Network. The views expressed in written materials or publications do not necessarily reflect the official policies of the Department of Health and Human Services.

Supplementary material

10020_2013_1901026_MOESM1_ESM.pdf (353 kb)
Supplementary material, approximately 353 KB.

References

  1. 1.
    Anderson KE, Sassa S, Bishop DF, Desnick RJ. (2001) Disorders of heme biosynthesis: X-linked sideroblastic anemias and the porphyrias. In: The Metabolic and Molecular Bases of Inherited Disease. 8th edition. Scriver CR, et al. (eds.) New York, McGraw-Hill, pp. 2991–3062.Google Scholar
  2. 2.
    Lecha M, Puy H, Deybach JC. (2009) Erythropoietic protoporphyria. Orphanet. J. Rare. Dis. 4:19.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Todd DJ. (1994) Erythropoietic protoporphyria. Br. J. Dermatol. 131:751–766.CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson KE, et al. (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann. Intern. Med. 142:439–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Gross U, Frank M, Doss MO. (1998) Hepatic complications of erythropoietic protoporphyria. Photodermatol. Photoimmunol. Photomed. 14:52–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Frank J, Poblete-Gutierrez P. (2011) Delayed diagnosis and diminished quality of life in erythropoietic protoporphyria: results of a cross-sectional study in Sweden. J. Intern. Med. 269:270–4.CrossRefPubMedGoogle Scholar
  7. 7.
    McGuire BM, et al. (2005) Liver transplantation for erythropoietic protoporphyria liver disease. Liver Transpl. 11:1590–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Rand EB, et al. (2006) Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics. 118:e1896–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Harms J, Lautenschlager S, Minder CE, Minder EI. (2009) An alpha-melanocyte-stimulating hormone analogue in erythropoietic protoporphyria. N. Engl. J. Med. 360:306–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Minder EI. (2010) Afamelanotide, an agonistic analog of alpha-melanocyte-stimulating hormone, in dermal phototoxicity of erythropoietic protoporphyria. Expert Opin. Investig. Drugs. 19:1591–602.CrossRefPubMedGoogle Scholar
  11. 11.
    Whatley SD, et al. (2010) Molecular epidemiology of erythropoietic protoporphyria in the U.K. Br. J. Dermatol. 162:642–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Schmitt C, Ducamp S, Gouya L, Deybach JC, Puy H. (2010) Erythropoietic protoporphyria: one disease, two genes and three molecular mechanisms. Pathol. Biol. (Paris). 58:372–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Gouya L, et al. (1996) Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele. Am. J. Hum. Genet. 58:292–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gouya L, et al. (2006) Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am. J. Hum. Genet. 78:2–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Stenson PD, et al. (2009) The Human Gene Mutation Database: 2008 update. Genome Med. 1:13.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Whatley SD, et al. (2008) C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am. J. Hum. Genet. 83:408–14.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Di Pierro E, Brancaleoni V, Tavazzi D, Cappellini MD. (2009) C-terminal deletion in the ALAS2 gene and X-linked dominant protoporphyria. Haematologica. 94:315.Google Scholar
  18. 18.
    Bloomer JR. (1997) Hepatic protoporphyrin metabolism in patients with advanced protoporphyric liver disease. Yale J. Biol. Med. 70:323–30.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Risheg H, Chen FP, Bloomer JR. (2003) Genotypic determinants of phenotype in North American patients with erythropoietic protoporphyria. Mol. Genet. Metab. 80:196–206.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, et al. (2011) Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria. Exp. Hematol. 39:784–94.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    (2010) A map of human genome variation from population-scale sequencing. Nature. 467:1061–73.Google Scholar
  22. 22.
    Gouya L, et al. (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat. Genet. 30:27–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Whatley SD, et al. (2007) Gene dosage analysis identifies large deletions of the FECH gene in 10% of families with erythropoietic protoporphyria. J. Invest. Dermatol. 127:2790–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Dogan RI, Getoor L, Wilbur WJ, Mount SM. (2007) SplicePort: an interactive splice-site analysis tool. Nucleic Acids Res. 35:W285–91.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sim NL, et al. (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40:W452–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Adzhubei IA, et al. (2010) A method and server for predicting damaging missense mutations. Nat. Methods. 7:248–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang X, et al. (1999) Haplotype analysis of families with erythropoietic protoporphyria and novel mutations of the ferrochelatase gene. J. Invest. Dermatol. 113:87–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Cooper DN, Youssoufian H. (1988) The CpG dinucleotide and human genetic disease. Hum. Genet. 78:151–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu CK, et al. (2001) The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat. Struct. Biol. 8:156–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Magnus IA, Jarrett A, Prankerd TA, Rimington C. (1961) Erythropoietic protoporphyria: a new porphyria syndrome with solar urticaria due to protoporphyrinaemia. Lancet. 2:448–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Bonkowsky HL, Bloomer JR, Ebert PS, Mahoney MJ. (1975) Heme synthetase deficiency in human protoporphyria: demonstration of the defect in liver and cultured skin fibroblasts. J. Clin. Invest. 56:1139–48.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bottomley SS, Tanaka M, Everett MA. (1975) Diminished erythroid ferrochelatase activity in protoporphyria. J. Lab. Clin. Med. 86:126–31.PubMedGoogle Scholar
  33. 33.
    Reed WB, et al. (1970) Erythropoietic protoporphyria: a clinical and genetic study. JAMA. 214:1060–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Went LN, Klasen EC. (1984) Genetic aspects of erythropoietic protoporphyria. Ann. Hum. Genet. 48:105–17.CrossRefPubMedGoogle Scholar
  35. 35.
    Nakahashi Y, Taketani S, Okuda M, Inoue K, Tokunaga R. (1990) Molecular cloning and sequence analysis of cDNA encoding human ferrochelatase. Biochem. Biophys. Res. Commun. 173:748–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Taketani S, Inazawa J, Nakahashi Y, Abe T, Tokunaga R. (1992) Structure of the human ferrochelatase gene: exon/intron gene organization and location of the gene to chromosome 18. Eur. J. Biochem. 205:217–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Lamoril J, et al. (1991) Human erythropoietic protoporphyria: two point mutations in the ferrochelatase gene. Biochem. Biophys. Res. Commun. 181:594–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Elder GH, et al. (2009) The molecular genetics of erythropoietic protoporphyria. Cell. Mol. Biol. (Noisy-le-grand). 55:118–26.Google Scholar
  39. 39.
    Gouya L, et al. (1999) Inheritance in erythropoietic protoporphyria: a common wild-type ferrochelatase allelic variant with low expression accounts for clinical manifestation. Blood. 93:2105–10.PubMedGoogle Scholar
  40. 40.
    Cotter PD, Baumann M, Bishop DF. (1992) Enzymatic defect in “X-linked” sideroblastic anemia: molecular evidence for erythroid delta-aminolevulinate synthase deficiency. Proc. Natl. Acad. Sci. U. S. A. 89:4028–32.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hunter GA, Ferreira GC. (2011) Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim. Biophys. Acta. 1814:1467–73.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bishop DF, Tchaikovskii V, Hoffbrand AV, Fraser ME, Margolis S. (2012) X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the beta-subunit of succinyl-CoA synthetase (SUCLA2). J. Biol. Chem. 287:28943–55.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kadirvel S, et al. (2012) The carboxyl-terminal region of erythroid-specific 5-aminolevulinate synthase acts as an intrinsic modifier for its catalytic activity and protein stability. Exp. Hematol. 40:477–6, e471.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Manisha Balwani
    • 1
  • Dana Doheny
    • 1
  • David F. Bishop
    • 1
  • Irina Nazarenko
    • 1
  • Makiko Yasuda
    • 1
  • Harry A. Dailey
    • 2
  • Karl E. Anderson
    • 3
  • D. Montgomery Bissell
    • 4
  • Joseph Bloomer
    • 5
  • Herbert L. Bonkovsky
    • 6
  • John D. Phillips
    • 7
  • Lawrence Liu
    • 8
  • Robert J. Desnick
    • 1
  • The Porphyrias Consortium of the National Institutes of Health Rare Diseases Clinical Research Network
  1. 1.Department of Genetics and Genomic SciencesMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of Microbiology and Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA
  3. 3.Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonUSA
  4. 4.Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  5. 5.Department of MedicineUniversity of AlabamaBirminghamUSA
  6. 6.Department of MedicineCarolinas Medical Center and HealthCare SystemCharlotteUSA
  7. 7.Department of Internal MedicineUniversity of UtahSalt Lake CityUSA
  8. 8.Department of MedicineMount Sinai School of MedicineNew YorkUSA

Personalised recommendations