Advertisement

Molecular Medicine

, Volume 19, Issue 1, pp 54–61 | Cite as

Potential of the Trifunctional Bispecific Antibody Surek Depends on Dendritic Cells: Rationale for a New Approach of Tumor Immunotherapy

  • Nina Eissler
  • Josef Mysliwietz
  • Nina Deppisch
  • Peter Ruf
  • Horst Lindhofer
  • Ralph Mocikat
Research Article

Abstract

Trifunctional bispecific antibodies (trAbs) used in tumor immunotherapy have the unique ability to recruit T cells toward antigens on the tumor cell surface and, moreover, to activate accessory cells through their immunoglobulin Fc region interacting with activating Fcγ receptors. This scenario gives rise to additional costimulatory signals required for T cell-mediated tumor cell destruction and induction of an immunologic memory. Here we show in an in vitro system that most effective trAb-dependent T-cell activation and tumor cell elimination are achieved in the presence of dendritic cells (DCs). On the basis of these findings, we devise a novel approach of cancer immunotherapy that combines the specific advantages of trAbs with those of DC-based vaccination. Simultaneous delivery of trAbs and in vitro differentiated DCs resulted in a markedly improved tumor rejection in a murine melanoma model compared with monotherapy.

Notes

Acknowledgments

We are indebted to Albert Geishauser, Nadine Hömberg and Christine Zehetmeier for expert technical assistance. We thank Jürgen Hess, Raymund Buhmann and Reinhard Zeidler for critically reading the manuscript. P Ruf and H Lindhofer appreciate the financial support for the trifunctional antibody Surek fostered within the collaborative project 0315229A of the Biochance SME innovative program of the Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research).

Supplementary material

10020_2013_1901054_MOESM1_ESM.pdf (700 kb)
Supplementary material, approximately 700 KB.

References

  1. 1.
    Banchereau J, et al. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767–811.CrossRefGoogle Scholar
  2. 2.
    Melief CJ. (2008) Cancer immunotherapy by dendritic cells. Immunity. 29:372–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Valone FH, et al. (2001) Dendritic cell-based treatment of cancer: closing in on a cellular therapy. Cancer J. 7 Suppl 2:S53–61.Google Scholar
  4. 4.
    Engleman EG. (2003) Dendritic cell-based cancer immunotherapy. Semin. Oncol. 30:23–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Mocikat R, Selmayr M, Thierfelder S, Lindhofer H. (1997) Trioma-based vaccination against B-cell lymphoma confers long-lasting tumor immunity. Cancer Res. 57:2346–9.PubMedGoogle Scholar
  6. 6.
    Selmayr M, et al. (1999) Induction of tumor immunity by autologous B lymphoma cells expressing a genetically engineered idiotype. Gene Ther. 6:778–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Selmayr M, Menzel H, Kremer JP, Thierfelder S, Mocikat R. (2000) B-cell lymphoma idiotypes chimerized by gene targeting can induce tumor immunity. Cancer Gene Ther. 7:501–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Graf N, Adam C, Mocikat R. (2003) Persistence of xenogenized vaccine cells in vivo. Int. J. Cancer. 105:217–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Kronenberger K, et al. (2002) Impact of the lymphoma idiotype on in vivo tumor protection in a vaccination model based on targeting antigens to antigen-presenting cells. Blood. 99:1327–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Peipp M, Valerius T. (2002) Bispecific antibodies targeting cancer cells. Biochem. Soc. Trans. 30:507–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Chames P, Baty D. (2009) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. 1:539–47.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zeidler R, et al. (1999) Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J. Immunol. 163:1246–52.PubMedGoogle Scholar
  13. 13.
    Zeidler R, et al. (2000) The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br. J. Cancer. 83:261–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ruf P, Lindhofer H. (2001) Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood. 98:2526–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Eiβler N, Ruf P, Mysliwietz J, Lindhofer H, Mocikat R. (2012) Trifunctional bispecific antibodies induce tumor-specific T cells and elicit a vaccination effect. Cancer Res. 72:3958–66.CrossRefGoogle Scholar
  16. 16.
    Haraguchi M, et al. (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc. Natl. Acad. Sci. U. S. A. 91:10455–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schrama D, et al. (2004) Shift from systemic to site-specific memory by tumor-targeted IL-2. J. Immunol. 172:5843–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Strehl J, et al. (1999) Gene therapy of B-cell lymphoma with cytokine gene-modified trioma cells. Int. J. Cancer. 83:113–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Ruf P, et al. (2004) Two new trifunctional antibodies for the therapy of human malignant melanoma. Int. J. Cancer. 108:725–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Lindhofer H, Mocikat R, Steipe B, Thierfelder S. (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas: implications for a single-step purification of bispecific antibodies. J. Immunol. 155:219–25.PubMedGoogle Scholar
  21. 21.
    Björk P, et al. (1993) Isolation, partial characterization, and molecular cloning of a human colon adenocarcinoma cell-surface glycoprotein recognized by the C215 mouse monoclonal antibody. J. Biol. Chem. 268:24232–41.PubMedGoogle Scholar
  22. 22.
    Ruf P, et al. (2012) Ganglioside GD2-specific trifunctional surrogate antibody Surek demonstrates therapeutic activity in a mouse melanoma model. J. Transl. Med. 10:219.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lindhofer H, Hess J, Ruf P. (2011) Triomab® antibodies for cancer therapy. In: Bispecific Antibodies. Kontermann R. (ed.). Springer, Heidelberg, pp. 289–312.CrossRefGoogle Scholar
  24. 24.
    Hess J, Ruf P, Lindhofer H. (2012) Cancer therapy with trifunctional antibodies: linking innate and adaptive immunity. Future Oncol. 8:73–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Heiss MM, et al. (2010) The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer. 127:2209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Linke R, Klein A, Seimetz D. (2010) Catumaxomab: clinical development and future directions. MAbs. 2:129–36.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ragupathi G, et al. (2003) Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunological adjuvant QS-21. Clin. Cancer Res. 9:5214–20.PubMedGoogle Scholar
  28. 28.
    Navid F, Santana VM, Barfield RC. (2010) Anti-GD2 antibody therapy for GD2-expressing tumors. Curr. Cancer Drug Targets. 10:200–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Egeter O, Mocikat R, Ghoreschi K, Dieckmann A, Röcken M. (2000) Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from nontransgenic mice. Cancer Res. 60:1515–20.PubMedGoogle Scholar
  30. 30.
    Schüler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T. (1999) T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J. Exp. Med. 189:803–10.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lüking C, et al. (2008) Antitumor effector functions of T cells are dependent on in vivo priming and restricted T-cell receptor expression. Int. J. Cancer. 122:2280–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Heiss M, et al. (2005) Immunotherapy of malignant ascites with trifunctional antibodies. Int. J. Cancer. 117:435–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Kiewe P, et al. (2006) Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin. Cancer Res. 12:3085–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Boussiotis VA, et al. (1994) Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science. 266:1039–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Linsley PS, Ledbetter JA. (1993) The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11:191–212.CrossRefPubMedGoogle Scholar
  36. 36.
    Adam C, Mysliwietz J, Mocikat R. (2007) Specific targeting of whole lymphoma cells to dendritic cells ex vivo provides a potent antitumor vaccine. J. Transl. Med. 5:16.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zobywalski A, et al. (2007) Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J. Transl. Med. 5:18.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Nina Eissler
    • 1
  • Josef Mysliwietz
    • 1
  • Nina Deppisch
    • 1
  • Peter Ruf
    • 2
  • Horst Lindhofer
    • 2
    • 3
  • Ralph Mocikat
    • 1
  1. 1.Institut für Molekulare ImmunologieHelmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und UmweltMunichGermany
  2. 2.Trion ResearchMartinsriedGermany
  3. 3.Trion PharmaMunichGermany

Personalised recommendations