Advertisement

Molecular Medicine

, Volume 18, Issue 2, pp 224–230 | Cite as

High Mobility Group Box Protein 1 (HMGB1)-Partner Molecule Complexes Enhance Cytokine Production by Signaling Through the Partner Molecule Receptor

  • Hulda Sigridur Hreggvidsdóttir
  • Anna M. Lundberg
  • Ann-Charlotte Aveberger
  • Lena Klevenvall
  • Ulf Andersson
  • Helena Erlandsson Harris
Research Article

Abstract

The nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators. Such complexes have the ability to enhance the induced immune response up to 100-fold, compared with induction by the ligand alone. To clarify the mechanisms for these strong synergistic effects, we studied receptor requirements. Interleukin (IL)-6 production was assessed in supernatants from cultured peritoneal macrophages from mice each deficient in one of the HMGB1 receptors (receptor for advanced glycation end products [RAGE], TLR2 or TLR4) or from wild-type controls. The cultures were stimulated with the TLR4 ligand lipopolysaccaride (LPS), the TLR2 ligand Pam3CysSerLys4 (Pam3CSK4), noninflammatory HMGB1 or each TLR ligand in complex with noninflammatory HMGB1. The activity of the HMGB1-TLR ligand complexes relied on engagement of the same receptor as for the noncomplexed TLR ligand, since HMGB1-LPS complexes used TLR4 and HMGB1-Pam3CSK4 complexes used TLR2. Deletion of any of the intracellular adaptor molecules used by TLR2 (myeloid differentiation factor-88 (MyD88), TIR domain-containing adaptor protein (TIRAP)) or TLR4 (MyD88, TIRAP, TIR domain-containing adaptor-inducing interferon-β (TRIF), TRIF-related adaptor molecule (TRAM)) had similar effects on HMGB1 complex activation compared with noncomplexed LPS or Pam3CSK4. This result implies that the enhancing effects of HMGB1-partner molecule complexes are not regulated by the induction of additional signaling cascades. Elucidating HMGB1 receptor usage in processes where HMGB1 acts alone or in complex with other molecules is essential for the understanding of basic HMGB1 biology and for designing HMGB1-targeted therapies.

Notes

Acknowledgments

This study was supported by the Swedish Research Council, the Swedish Rheumatism Association, the King Gustaf V foundation, the Swedish Cancer Society, the Von Kantzow Foundation and the European Commission (AtheroRemo collaborative project).

References

  1. 1.
    Andersson U, Tracey KJ. (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 29:139–62.CrossRefGoogle Scholar
  2. 2.
    Tang D, Kang R, Zeh HJ 3rd, Lotze MT. (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid. Redox. Signal. 14:1315–35.CrossRefGoogle Scholar
  3. 3.
    Wang H, et al. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science. 285:248–51.CrossRefGoogle Scholar
  4. 4.
    Semino C, Angelini G, Poggi A, Rubartelli A. (2005) NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood. 106:609–16.CrossRefGoogle Scholar
  5. 5.
    Dumitriu IE, et al. (2005) Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J. Immunol. 174:7506–15.CrossRefGoogle Scholar
  6. 6.
    Kawahara K, et al. (2007) HMGB1 release in cocultures of porcine endothelial and human T cells. Xenotransplantation. 14:636–41.CrossRefGoogle Scholar
  7. 7.
    Scaffidi P, Misteli T, Bianchi ME. (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 418:191–5.CrossRefGoogle Scholar
  8. 8.
    Degryse B, et al. (2001) The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell. Biol. 152:1197–206.CrossRefGoogle Scholar
  9. 9.
    Goldstein RS, et al. (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock. 25:571–4.CrossRefGoogle Scholar
  10. 10.
    van Zoelen MA, et al. (2007) Systemic and local high mobility group box 1 concentrations during severe infection. Crit. Care Med. 35:2799–804.CrossRefGoogle Scholar
  11. 11.
    Yang R, et al. (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol. Med. 12:105–14.CrossRefGoogle Scholar
  12. 12.
    Andersson U, et al. (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192:565–70.CrossRefGoogle Scholar
  13. 13.
    Yang H, et al. (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl. Acad. Sci. U. S. A. 107:11942–7.CrossRefGoogle Scholar
  14. 14.
    Hreggvidsdottir HS, et al. (2009) The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J. Leukoc. Biol. 86:655–62.CrossRefGoogle Scholar
  15. 15.
    Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H. (2007) Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol. 81:49–58.CrossRefGoogle Scholar
  16. 16.
    Antoine DJ, Williams DP, Kipar A, Laverty H, Park BK. (2010) Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity. Mol. Med. 16:479–90.CrossRefGoogle Scholar
  17. 17.
    Kazama H, et al. (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 29:21–32.CrossRefGoogle Scholar
  18. 18.
    Youn JH, Oh YJ, Kim ES, Choi JE, Shin JS. (2008) High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J. Immunol. 180:5067–74.CrossRefGoogle Scholar
  19. 19.
    Ivanov S, et al. (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 110:1970–81.CrossRefGoogle Scholar
  20. 20.
    Tian J, et al. (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8:487–96.CrossRefGoogle Scholar
  21. 21.
    Qin YH, et al. (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J. Immunol. 183:6244–50.CrossRefGoogle Scholar
  22. 22.
    Sha Y, Zmijewski J, Xu Z, Abraham E. (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J. Immunol. 180:2531–7.CrossRefGoogle Scholar
  23. 23.
    Wahamaa H, et al. (2011) High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res. Ther. 13:R136.CrossRefGoogle Scholar
  24. 24.
    Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P. (2009) Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J. Leukoc. Biol. 86:609–15.CrossRefGoogle Scholar
  25. 25.
    Urbonaviciute V, et al. (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205:3007–18.CrossRefGoogle Scholar
  26. 26.
    Yanai H, et al. (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 462:99–103.CrossRefGoogle Scholar
  27. 27.
    Yanai H, et al. (2011) Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proc. Natl. Acad. Sci. U. S. A. 108:11542–7.CrossRefGoogle Scholar
  28. 28.
    Kokkola R, et al. (2005) RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61:1–9.CrossRefGoogle Scholar
  29. 29.
    Park JS, et al. (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell. Physiol. 290:C917–24.CrossRefGoogle Scholar
  30. 30.
    Kawai T, Akira S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373–84.CrossRefGoogle Scholar
  31. 31.
    Kenny EF, et al. (2009) MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J. Immunol. 183:3642–51.CrossRefGoogle Scholar
  32. 32.
    Youn JH, et al. (2011) Identification of lipopolysaccharide-binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model. Eur. J. Immunol. 41:2753–62.CrossRefGoogle Scholar
  33. 33.
    Antoine DJ, Williams DP, Kipar A, Laverty H, Park BK. (2010) Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity. Mol. Med. 16:479–90.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Hulda Sigridur Hreggvidsdóttir
    • 1
  • Anna M. Lundberg
    • 2
  • Ann-Charlotte Aveberger
    • 3
  • Lena Klevenvall
    • 3
  • Ulf Andersson
    • 3
  • Helena Erlandsson Harris
    • 1
  1. 1.Karolinska Institutet, Department of Medicine, Rheumatology Unit, CMM L8:04Karolinska University HospitalStockholmSweden
  2. 2.Department of Medicine, Experimental Cardiovascular Research Group, Center for Molecular MedicineKarolinska InstitutetStockholmSweden
  3. 3.Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden

Personalised recommendations