Molecular Medicine

, Volume 18, Issue 1, pp 47–55 | Cite as

Notch Signaling in Ocular Vasculature Development and Diseases

  • Guo-Rui Dou
  • Lin Wang
  • Yu-Sheng Wang
  • Hua Han
Review Article


Ocular angiogenesis, characterized by the formation of new blood vessels in the avascular area in eyes, is a highly coordinated process involved in retinal vasculature formation and several ocular diseases such as age-related macular degeneration, proliferative diabetic retinopathy and retinopathy of prematurity. This process is orchestrated by complicated cellular interactions and vascular growth factors, during which endothelial cells acquire heterogeneous phenotypes and distinct cellular destinations. To date, while the vascular endothelial growth factor has been identified as the most critical angiogenic agent with a remarkable therapeutic value, the Notch signaling pathway appears to be a similarly important regulator in several angiogenic steps. Recent progress has highlighted the involvement, mechanisms and therapeutic potential of Notch signaling in retinal vasculature development and pathological angiogenesis-related eye disorders, which may cause irreversible blindness.



This work was supported by grants from the Ministry of Science and Technology of China (2011CB510200, 2009CB521706, 2011ZXJ09101-02C), National Natural Science Foundation of China (NSFC) (30872818, 30830067) and Natural Science of Shaanxi Province (2011K12-46, XJZT11M03).


  1. 1.
    Uemura A, Kusuhara S, Katsuta H, Nishikawa S. (2006) Angiogenesis in the mouse retina: a model system for experimental manipulation. Exp. Cell. Res. 312:676–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Bradley J, Ju M, Robinson GS. (2007) Combination therapy for the treatment of ocular neovascularization. Angiogenesis. 10:141–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Kent D, Sheridan C. (2003) Choroidal neovascularization: a wound healing perspective. Mol. Vis. 9:747–55.PubMedGoogle Scholar
  4. 4.
    Morello CM. (2007) Etiology and natural history of diabetic retinopathy: an overview. Am. J. Health Syst. Pharm. 64:S3–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Dorrell M, Uusitalo-Jarvinen H, Aguilar E, Friedlander M. (2007) Ocular neovascularization: basic mechanisms and therapeutic advances. Surv. Ophthalmol. 52 Suppl 1:S3–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Kinnunen K, Yl-Herttuala S. (2011) Vascular endothelial growth factors in retinal and choroidal neovascular diseases. Ann. Med. 2011, Feb 1 [Epub ahead of print].Google Scholar
  7. 7.
    Provis JM, et al. (1997) Development of the human retinal vasculature: cellular relations and VEGF expression. Exp. Eye Res. 65:555–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Saint-Geniez M, Maldonado AE, D’Amore PA. (2006) VEGF expression and receptor activation in the choroid during development and in the adult. Invest. Ophthalmol. Vis. Sci. 47:3135–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Stahl A, et al. (2010) The mouse retina as an angiogenesis model. Invest. Ophthalmol. Vis. Sci. 51:2813–26.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gerhardt H, et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 161:1163–77.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol. 29:639–49.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Carmeliet P, De Smet F, Loges S, Mazzone M. (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat. Rev. Clin. Oncol. 6:315–26.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Alev C, Ii M, Asahara T. (2011) Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid. Redox. Signal. 15:949–65.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lima e Silva R, et al. (2007) The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J. 21:3219–30.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Friedlander M, et al. (2007) Progenitor cells and retinal angiogenesis. Angiogenesis. 10:89–101.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kidd S, Lockett TJ, Young MW. (1983) The Notch locus of Drosophila melanogaster. Cell. 34:421–33.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gridley T. (2007) Notch signaling in vascular development and physiology. Development. 134:2709–18.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gridley T. (2010) Notch signaling in the vasculature. Curr. Top. Dev. Biol. 92:277–309.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Phng LK, Gerhardt H. (2009) Angiogenesis: a team effort coordinated by Notch. Dev. Cell. 16:196–208.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Claxton S, Fruttiger M. (2004) Periodic delta-like 4 expression in developing retinal arteries. Gene Expr. Patterns. 5:123–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Villa N, et al. (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech. Dev. 108:161–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Favre CJ, et al. (2003) Expression of genes involved in vascular development and angiogenesis in endothelial cells of adult lung. Am. J. Physiol. Heart Circ. Physiol. 285:H1917–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Xue Y, et al. (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8:723–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Carlson TR, et al. (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc. Natl. Acad. Sci. U. S. A. 102:9884–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Krebs LT, et al. (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14:1343–52.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu ZJ, et al. (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J. 20:1009–11.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M. (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes. Dev. 18:901–11.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Taylor KL, Henderson AM, Hughes CC. (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/ KDR expression. Microvasc. Res. 64:372–83.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hofmann JJ, Luisa Iruela-Arispe M. (2007) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr. Patterns. 7:461–70.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hellstrom M, et al. (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 445:776–80.CrossRefGoogle Scholar
  31. 31.
    Suchting S, et al. (2007) The Notch ligand deltalike 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl. Acad. Sci. U. S. A. 104:3225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Benedito R, et al. (2009) The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–35.CrossRefGoogle Scholar
  33. 33.
    Lobov IB, et al. (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. U. S. A. 104:3219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Siekmann AF, Lawson ND. (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 445:781–4.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    del Toro R, et al. (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood. 116:4025–33.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    von Tell D, Armulik A, Betsholtz C. (2006) Pericytes and vascular stability. Exp. Cell Res. 312:623–9.CrossRefGoogle Scholar
  37. 37.
    Kim JH, Kim JH, Yu YS, Kim DH, Kim KW. (2009) Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. J. Neurosci. Res. 87:653–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wang T, Baron M, Trump D. (2008) An overview of Notch3 function in vascular smooth muscle cells. Prog. Biophys. Mol. Biol. 96:499–509.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. (2010) Notch3 is critical for proper angiogenesis and mural cell investment. Circ. Res. 107:860–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Liu H, Kennard S, Lilly B. (2009) NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ. Res. 104:466–75.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Li JL, et al. (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 67:11244–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Scehnet JS, et al. (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood. 109:4753–60.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sainson RC, et al. (2005) Cell-autonomous Notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J. 19:1027–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Li B, et al. (2006) Protective effects of transcription factor HESR1 on retinal vasculature. Microvasc. Res. 72:146–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Dou GR, et al. (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J. 22:1606–17.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Noseda M, et al. (2004) Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol. Cell. Biol. 24:8813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Phng LK, et al. (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell. 16:70–82.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Liu Z, et al. (2010) Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J. Clin. Invest. 121:800–8.CrossRefGoogle Scholar
  49. 49.
    Androutsellis-Theotokis A, et al. (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 442:823–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Diez H, et al. (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp. Cell. Res. 313:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kwon SM, Alev C, Asahara T. (2009) The role of Notch signaling in endothelial progenitor cell biology. Trends Cardiovasc. Med. 19:170–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Kwon SM, et al. (2008) Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 118:157–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Real C, et al. (2011) Bone marrow-derived endothelial progenitors expressing delta-like 4 (Dll4) regulate tumor angiogenesis. PLoS One. 6:e18323.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zheng H, Fu G, Dai T, Huang H. (2007) Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J. Cardiovasc. Pharmacol. 50:274–80.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Wang L, et al. (2009) Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice. PLoS One. 4: e7572.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Harrington LS, et al. (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc. Res. 75:144–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Ding BS, et al. (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 468:310–5.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang L, et al. (2009) Disruption of the transcription factor recombination signal-binding protein-Jkappa (RBP-J) leads to veno-occlusive disease and interfered liver regeneration in mice. Hepatology. 49:268–77.CrossRefGoogle Scholar
  59. 59.
    Funahashi Y, et al. (2011) Notch modulates VEGF action in endothelial cells by inducing matrix metalloprotease activity. Vasc. Cell. 3:2.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Han S, Dziedzic N, Gadue P, Keller GM, Gouon-Evans V. (2011) An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells. 29:217–28.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rehman J, Li J, Orschell CM, March KL. (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 107:1164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Otani A, et al. (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat. Med. 8:1004–10.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. (2006) Potential role of microglia in retinal blood vessel formation. Invest. Ophthalmol. Vis. Sci. 47:3595–602.PubMedCrossRefGoogle Scholar
  64. 64.
    Scott A, et al. (2010) Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One. 29:e11863.CrossRefGoogle Scholar
  65. 65.
    Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J. (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 118:3436–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wei Z, et al. (2011) Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke. 42:2589–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang YC, et al. (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70:4840–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Joutel A, et al. (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 383:707–10.CrossRefGoogle Scholar
  69. 69.
    Sainson RC, Harris AL. (2008) Regulation of angiogenesis by homotypic and heterotypic Notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis. 11:41–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim BJ, Fulton AB. (2007) The genetics and ocular findings of Alagille syndrome. Semin. Ophthalmol. 22:205–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Lobov IB, et al. (2011) The Dll4/Notch pathway controls post-angiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow. Blood. 117:6728–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Arumugam TV, et al. (2006) Gamma secretasemediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat. Med. 12:621–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Kikuchi R, et al. (2011) Pitavastatin-induced angiogenesis and arteriogenesis is mediated by Notch1 in a murine hindlimb ischemia model without induction of VEGF. Lab. Invest. 91:691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Al Haj Zen A, et al. (2010) Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ. Res. 107:283–93.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Takeshita K, et al. (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ. Res. 100:70–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Cao R, Jensen LD, Soll I, Hauptmann G, Cao Y. (2008) Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS One. 3:e2748.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ahmad I, et al. (2011) Regulation of ocular angiogenesis by Notch signaling: implications in neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 52:2868–78.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dong X, et al. (2011) Influence of Dll4 via HIF-1alpha-VEGF signaling on the angiogenesis of choroidal neovasculariztion under hypoxic conditions. PLoS One. 6:e18481.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Schouwey K, Aydin IT, Radtke F, Beermann F. (2011) RBP-Jkappa-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice. Oncogene. 30:313–22.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Pfister F, et al. (2008) Pericytes migration: a novel mechanism of pericytes loss experimental diabetic retinopathy. Diabetes. 57:2496–502.CrossRefGoogle Scholar
  81. 81.
    Walshe TE, et al. (2011) Microvascular retinal endothelial and pericyte cell apoptosis in vitro: role of Hedgehog and Notch signaling. Invest. Ophthalmol. Vis. Sci. 52:4472–83.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Cao L, et al. (2010) Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice. Biomaterials. 31:9048–56.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Shams N, Ianchulev T. (2006) Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol. Clin. North Am. 19:335–44.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. (2006) VEGF receptor signaling: in control of vascular function. Nat. Rev. Mol. Cell. Biol. 7:359–71.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Penn JS, et al. (2008) Vascular endothelial growth factor in eye disease. Prog. Retin. Eye Res. 27:331–71.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Siekmann AF, Covassin L, Lawson ND. (2008) Modulation of VEGF signalling output by the Notch pathway. Bioessays. 30:303–13.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jakobsson L, Bentley K, Gerhardt H. (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem. Soc. Trans. 37:1233–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu ZJ, et al. (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol. Cell. Biol. 23:14–25.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lawson ND, Vogel AM, Weinstein BM. (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell. 3:127–36.PubMedCrossRefGoogle Scholar
  90. 90.
    Williams CK, Li JL, Murga M, Harris AL, Tosato G. (2006) Up-regulation of the Notch ligand delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 107:931–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Krueger J, et al. (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development. 138:2111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    LeCouter J, et al. (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR1. Science. 299:890–3.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Jakobsson L, et al. (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell. Biol. 12:943–53.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC. (2001) The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J. Biol. Chem. 276:6169–76.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Shawber CJ, et al. (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J. Clin. Invest. 117:3369–82.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Tammela T, et al. (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 454:656–60.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Erber R, et al. (2006) EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J. 25:628–41.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Grego-Bessa J, et al. (2007) Notch signaling is essential for ventricular chamber development. Dev. Cell. 12:415–29.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Iso T, et al. (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem. Biophys. Res. Commun. 341:708–14.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hainaud P, et al. (2006) The role of the vascular endothelial growth factor-delta-like 4 ligand/ Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res. 66:8501–10.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Djokovic D, et al. (2010) Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogenesis. BMC Cancer. 10:641.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sawamiphak S, et al. (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumor angiogenesis. Nature. 465:487–91.CrossRefGoogle Scholar
  103. 103.
    Niimi H, et al. (2007) Notch signaling is necessary for epithelial growth arrest by TGF-beta. J. Cell. Biol. 176:695–707.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Itoh F, et al. (2004) Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23:541–51.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li F, et al. (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell. 20:291–302.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ohlmann A, et al. (2010) Norrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice. J. Neurosci. 30:183–93.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Patel NS, et al. (2005) Up-regulation of delta-like4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65:8690–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kalen M, et al. (2011) Gamma-secretase inhibitor treatment promotes VEGF-A-driven blood vessel growth and vascular leakage but disrupt neovascular perfusion. PLoS One. 14:e18709.CrossRefGoogle Scholar
  109. 109.
    Noguera-Troise I, et al. (2006) Blockade of Dll4 inhibits tumour growth by promoting nonproductive angiogenesis. Nature. 444:1032–7.CrossRefGoogle Scholar
  110. 110.
    Ridgway J, et al. (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 444:1083–7.CrossRefGoogle Scholar
  111. 111.
    Yan M, et al. (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature. 463:E6–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Ables JL, et al. (2011) Not(ch) just development: Notch signalling in the adult brain. Nat. Rev. Neurosci. 12:269–83.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hu YY, et al. (2011) Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer. 11:82.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Komine O, et al. (2011) RBP-J promotes the maturation of neuronal progenitors. Dev. Biol. 354:44–54.PubMedCrossRefGoogle Scholar
  115. 115.
    Segarra M, et al. (2008) Dll4 activation of Notch signaling reduces tumor vascularity and inhibits tumor growth. Blood. 112:1904–11.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Guo-Rui Dou
    • 1
    • 2
  • Lin Wang
    • 2
    • 3
  • Yu-Sheng Wang
    • 1
  • Hua Han
    • 2
  1. 1.Department of Ophthalmology, Xijing HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Department of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’anChina
  3. 3.Department of Hepatic SurgeryXijing HospitalXi’anChina

Personalised recommendations