Advertisement

Molecular Medicine

, Volume 18, Issue 3, pp 445–454 | Cite as

Effect of Cigarette Smoke Exposure and Structural Modifications on the α-1 Antitrypsin Interaction with Caspases

  • Angelia D Lockett
  • Mary Van Demark
  • Yuan Gu
  • Kelly S Schweitzer
  • Ninotchka Sigua
  • Krzysztof Kamocki
  • Iwona Fijalkowska
  • Jana Garrison
  • Amanda J Fisher
  • Karina Serban
  • Robert A Wise
  • Terence R Flotte
  • Christian Mueller
  • Robert G PressonJr.
  • Horia I Petrache
  • Rubin M Tuder
  • Irina Petrache
Research Article

Abstract

α-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.

Notes

Acknowledgments

VA Merit Award (I Petrache); NIH-NHLBI 1P50 HL084945 (I Petrache, RM Tuder, RA Wise); NIH-NIAID T32 AI060519-05 (AD Lockett); and the Dorney-Koppel Family Foundation (RA Wise).

References

  1. 1.
    Kochanek KD, Xu J, Murphy SL, Miniño AM, Kung HC. (2011) Deaths: preliminary data for 2009. Natl. Vital Stat. Rep. 59:1–51.PubMedGoogle Scholar
  2. 2.
    Yokohori N, Aoshiba K, Nagai A. (2004) Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest. 125:626–32.CrossRefGoogle Scholar
  3. 3.
    Petrache I, et al. (2006) alpha-1 Antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol. 169:1155–66.CrossRefGoogle Scholar
  4. 4.
    Poller W, Willnow TE, Hilpert J, Herz J. (1995) Differential recognition of -antitrypsin-elastase and -antichymotrypsin-cathepsin G complexes by the low density lipoprotein receptor-related protein. J. Biol. Chem. 270:2841–5.CrossRefGoogle Scholar
  5. 5.
    Owen MC, Carrell RW. (1977) alpha-1-Antitrypsin: sequence of the Z variant tryptic peptide. FEBS Lett 79:245–7.CrossRefGoogle Scholar
  6. 6.
    Mahadeva R, et al. (1999) Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J. Clin. Invest. 103:999–1006.CrossRefGoogle Scholar
  7. 7.
    Elliott PR, Bilton D, Lomas DA. (1998) Lung polymers in Z alpha 1-antitrypsin deficiency-related emphysema. Am. J. Respir. Cell Mol. Biol. 18:670–4.CrossRefGoogle Scholar
  8. 8.
    Taggart C, et al. (2000) Oxidation of either methionine 351 or methionine 358 in α1-antitrypsin causes loss of anti-neutrophil elastase activity. J. Biol. Chem. 275:27258–65.PubMedGoogle Scholar
  9. 9.
    Nadiri A, Wolinski MK, Saleh M. (2006) The inflammatory caspases: key players in the host response to pathogenic invasion and sepsis. J. Immunol. 177:4239–45.CrossRefGoogle Scholar
  10. 10.
    Song S, et al. (2001) Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Ther. 8:1299–306.CrossRefGoogle Scholar
  11. 11.
    Liqun Wang R, et al. (2009) Recombinant AAV serotype and capsid mutant comparison for pulmonary gene transfer of alpha-1-antitrypsin using invasive and noninvasive delivery. Mol. Ther. 17:81–7.CrossRefGoogle Scholar
  12. 12.
    Huang J, et al. (2001) Expression and purification of functional human alpha-1-antitrypsin from cultured plant cells. Biotechnol. Prog. 17:126–33.CrossRefGoogle Scholar
  13. 13.
    Petrache I, et al. (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med. 11:491–8.CrossRefGoogle Scholar
  14. 14.
    Zolotukhin S, et al. (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. 28:158–67.CrossRefGoogle Scholar
  15. 15.
    Sirninger J, et al. (2004) Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector. Hum. Gene. Ther. 15:832–41.PubMedGoogle Scholar
  16. 16.
    Aoshiba K, Yokohori N, Nagai A. (2003) Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am. J. Respir. Cell Mol. Biol. 28:555–62.CrossRefGoogle Scholar
  17. 17.
    Tuder RM, et al. (2003) Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol. 29:88–97.CrossRefGoogle Scholar
  18. 18.
    Petrache I, et al. (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L1168–78.CrossRefGoogle Scholar
  19. 19.
    Petrache I, et al. (2006) A novel antiapoptotic role for alpha1-antitrypsin in the prevention of pulmonary emphysema. Am. J. Respir. Crit. Care Med. 173:1222–8.CrossRefGoogle Scholar
  20. 20.
    Carp H, Miller F, Hoidal JR, Janoff A. (1982) Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc. Natl. Acad. Sci. U. S. A. 79:2041–5.CrossRefGoogle Scholar
  21. 21.
    Johnson D, Travis J. (1979) The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J. Biol. Chem. 254:4022–6.PubMedGoogle Scholar
  22. 22.
    Miyamoto Y, Akaike T, Maeda H. (2000) S-nitrosylated human alpha(1)-protease inhibitor. Biochim. Biophys. Acta. 1477:90–7.CrossRefGoogle Scholar
  23. 23.
    Li Z, et al. (2009) Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am. J. Physiol. Lung Cell Mol. Physiol. 297: L388–400.CrossRefGoogle Scholar
  24. 24.
    Greene CM, et al. (2010) Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells. Eur. Respir. J. 35:1155–63.CrossRefGoogle Scholar
  25. 25.
    Alam S, Li Z, Janciauskiene S, Mahadeva R. (2011) Oxidation of Z alpha1-antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. Am. J. Respir. Cell Mol. Biol. 45:261–9.CrossRefGoogle Scholar
  26. 26.
    Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res. 7:53.CrossRefGoogle Scholar
  27. 27.
    Riedl SJ, Shi Y. (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell. Biol. 5:897–907.CrossRefGoogle Scholar
  28. 28.
    Allsopp TE, et al. (2000) Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death Differ. 7:984–93.CrossRefGoogle Scholar
  29. 29.
    Toldo S, et al. (2011) Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 51:244–251.CrossRefGoogle Scholar
  30. 30.
    Kasahara Y, Tuder RM, Cool CD, Voelkel NF. (2000) Expression of 15-lipoxygenase and evidence for apoptosis in the lungs from patients with COPD. Chest. 117:260S.CrossRefGoogle Scholar
  31. 31.
    Segura-Valdez L, et al. (2000) Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest. 117:684–94.CrossRefGoogle Scholar
  32. 32.
    Bartalesi B, et al. (2005) Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur. Respir. J. 25:15–22.CrossRefGoogle Scholar
  33. 33.
    Shah AM, et al. (2010) Risk of all-cause mortality, recurrent myocardial infarction, and heart failure hospitalization associated with smoking status following myocardial infarction with left ventricular dysfunction. Am. J. Cardiol. 106:911–6.CrossRefGoogle Scholar
  34. 34.
    Song YM, Cho HJ. (2008) Risk of stroke and myocardial infarction after reduction or cessation of cigarette smoking: a cohort study in Korean men. Stroke. 39:2432–8.CrossRefGoogle Scholar
  35. 35.
    Wilson K, Gibson N, Willan A, Cook D. (2000) Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Arch. Intern. Med. 160:939–44.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Angelia D Lockett
    • 1
  • Mary Van Demark
    • 1
  • Yuan Gu
    • 1
  • Kelly S Schweitzer
    • 1
  • Ninotchka Sigua
    • 1
  • Krzysztof Kamocki
    • 1
  • Iwona Fijalkowska
    • 2
  • Jana Garrison
    • 1
  • Amanda J Fisher
    • 3
    • 5
  • Karina Serban
    • 1
  • Robert A Wise
    • 2
  • Terence R Flotte
    • 4
  • Christian Mueller
    • 4
  • Robert G PressonJr.
    • 3
    • 5
  • Horia I Petrache
    • 6
  • Rubin M Tuder
    • 7
  • Irina Petrache
    • 1
    • 3
    • 8
  1. 1.Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, Walther Hall, R3, C400Indiana UniversityIndianapolisUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.Center for ImmunobiologyIndiana UniversityIndianapolisUSA
  4. 4.Gene Therapy CenterUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Department of AnesthesiologyIndiana UniversityIndianapolisUSA
  6. 6.Department of PhysicsIndiana University-Purdue University IndianapolisIndianapolisUSA
  7. 7.University of ColoradoDenverUSA
  8. 8.Roudebush Veteran Affairs Medical CenterIndianapolisUSA

Personalised recommendations