Molecular Medicine

, Volume 17, Issue 11–12, pp 1383–1396 | Cite as

Selective IgA Deficiency in Autoimmune Diseases

  • Ning Wang
  • Nan Shen
  • Timothy J. Vyse
  • Vidya Anand
  • Iva Gunnarson
  • Gunnar Sturfelt
  • Solbritt Rantapää-Dahlqvist
  • Kerstin Elvin
  • Lennart Truedsson
  • Bengt A. Andersson
  • Charlotte Dahle
  • Eva Örtqvist
  • Peter K. Gregersen
  • Timothy W. Behrens
  • Lennart Hammarström
Invited Review Article


Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. It has previously been suggested to be associated with a variety of concomitant autoimmune diseases. In this review, we present data on the prevalence of IgAD in patients with Graves disease (GD), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), celiac disease (CD), myasthenia gravis (MG) and rheumatoid arthritis (RA) on the basis of both our own recent large-scale screening results and literature data. Genetic factors are important for the development of both IgAD and various autoimmune disorders, including GD, SLE, T1D, CD, MG and RA, and a strong association with the major histocompatibility complex (MHC) region has been reported. In addition, non-MHC genes, such as interferon-induced helicase 1 (IFIH1) and c-type lectin domain family 16, member A (CLEC16A), are also associated with the development of IgAD and some of the above diseases. This indicates a possible common genetic background. In this review, we present suggestive evidence for a shared genetic predisposition between these disorders.



This work was supported by the Swedish Research Council, the European Union-funded project EURO-PADnet (grant 201 549) and the KI funding for PhD students program for PhD students at the Karolinska Institutet (N Wang). We are indebted to Francesco Cucca at the University of Sassari, Italy, for providing samples from Italian patients with T1D and Magdalena Janzi and Ryan Ramanujam for their contributions in the early stages of this work.


  1. 1.
    Pan-Hammarström Q, Hammarström L (2008) Antibody deficiency diseases. Eur. J. Immunol. 38:327–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Pereira LF, et al. (1997) Prevalence of selective IgA deficiency in Spain: more than we thought. Blood. 90:893.PubMedGoogle Scholar
  3. 3.
    Kanoh T, et al. (1986) Selective IgA deficiency in Japanese blood donors: frequency and statistical analysis. Vox Sang. 50:81–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Weber-Mzell D, et al. (2004) Gender, age and seasonal effects on IgA deficiency: a study of 7293 Caucasians. Eur. J. Clin. Invest. 34:224–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Janzi M, et al. (2009) Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin. Immunol. 133:78–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Notarangelo LD, et al. (2009) Primary immunodeficiencies: 2009 update. J. Allergy Clin. Immunol. 124:1161–78.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Latiff AHA, Kerr MA. (2007) The clinical significance of immunoglobulin A deficiency. Ann. Clin. Biochem. 44:131–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Cunningham-Rundles C, Fotino M, Rosina O, Peter JB. (1991) Selective IgA deficiency, IgG subclass deficiency, and the major histocompatibility complex. Clin. Immunol. Immunopathol. 61:S61–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Olerup O, Smith CI, Hammarström L. (1990) Different amino acids at position 57 of the HLA-DQ beta chain associated with susceptibility and resistance to IgA deficiency. Nature. 347:289–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Mohammadi J, et al. (2010) IgA deficiency and the MHC: assessment of relative risk and micro-heterogeneity within the HLA A1 B8, DR3 (8.1) haplotype. J. Clin. Immunol. 30:138–43.PubMedCrossRefGoogle Scholar
  11. 11.
    MacHulla HK, et al. (2000) HLA-A, B, Cw and DRB1, DRB3/4/5, DQB1, DPB1 frequencies in German immunoglobulin A-deficient individuals. Scand. J. Immunol. 52:207–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Goyette P, et al. (2009) Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc. Natl. Acad. Sci. U. S. A. 106:18680–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ferreira RC, et al. (2010) Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat. Genet. 42:777–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramanujam R, Piehl F, Pirskanen R, Gregersen PK, Hammarström L. (2011) Concomitant autoimmunity in myasthenia gravis: lack of association with IgA deficiency. J. Neuroimmunol. 236:118–22.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jorgensen GH, et al. (2011) Association of immunoglobulin A deficiency and elevated thyrotropin-receptor autoantibodies in two Nordic countries. Hum. Immunol. 72:166–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Price P, et al. (1999) The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol. Rev. 167:257–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Vandiedonck C, et al. (2004) Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proc. Natl. Acad. Sci. U. S. A. 101:15464–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jawaheer D, et al. (2002) Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am. J. Hum. Genet. 71:585–94.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jacobson DL, Gange SJ, Rose NR, Graham NM. (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84:223–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Prabhakar BS, Bahn RS, Smith TJ. (2003) Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr. Rev. 24:802–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Zöphel K, Roggenbuck D, Schott M. (2010) Clinical review about TRAb assay’s history. Autoimmun. Rev. 9:695–700.PubMedCrossRefGoogle Scholar
  22. 22.
    Lantz M, Abraham-Nordling M, Svensson J, Wallin G, Hallengren B. (2009) Immigration and the incidence of Graves’ thyrotoxicosis, thyrotoxic multinodular goiter and solitary toxic adenoma. Eur. J. Endocrinol. 160:201–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Wong GW, Cheng PS. (2001) Increasing incidence of childhood Graves’ disease in Hong Kong: a follow-up study. Clin. Endocrinol. (Oxf). 54:547–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Tomer Y, Davies TF (2003) Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr. Rev. 24:694–717.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobson EM, Huber A, Tomer Y. (2008) The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J. Autoimmun. 30:58–62.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Farid NR, Stone E, Johnson G. (1980) Graves’ disease and HLA: clinical and epidemiologic associations. Clin. Endocrinol. (Oxf). 13:535–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Zamani M, Spaepen M, Bex M, Bouillon R, Cassiman JJ. (2000) Primary role of the HLA class II DRB1*0301 allele in Graves disease. Am. J. Med. Genet. 95:432–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Yanagawa T, et al. (1993) Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. J. Clin. Endocrinol. Metab. 76:1569–74.PubMedGoogle Scholar
  29. 29.
    Marga M, Denisova A, Sochnev A, Pirags V, Farid NR. (2001) Two HLA DRB 1 alleles confer independent genetic susceptibility to Graves disease: relevance of cross-population studies. Am. J. Med. Genet. 102:188–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Jacobson EM, Tomer Y. (2007) The genetic basis of thyroid autoimmunity. Thyroid. 17:949–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Tomer Y. (2010) Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 20:715–25.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pariente EA, et al. (1985) Collagenous colitis, IgA deficiency, Basedow’s disease and atrophic gastritis [in French]. Gastroenterol. Clin. Biol. 9:738–11.PubMedGoogle Scholar
  33. 33.
    Mano T, Kawakubo A, Yamamoto M. (1992) Isolated IgA deficiency accompanied by autoimmune thyroid disease. Intern. Med. 31:1201–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffman WH, Helman SW, Sekul E, Carroll JE, Vega RA. (2003) Lambert-Eaton Myasthenic syndrome in a child with an autoimmune phenotype. Am. J. Med. Genet. A. 119A:77–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Silva JM de A, Silva CP, Melo FF, Silva LAA, Utagawa CY. (2010) Graves disease and IgA deficiency as manifestations of 22q11.2 deletion syndrome [in Portuguese]. Arq. Bras. Endocrinol. Metabol. 54:572–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Ch’ng CL, Biswas M, Benton A, Jones MK, Kingham JGC. (2005) Prospective screening for coeliac disease in patients with Graves’ hyperthyroidism using anti-gliadin and tissue transglutaminase antibodies. Clin. Endocrinol. (Oxf). 62:303–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Collin P, Salmi J, Hällström O, Reunala T, Pasternack A. (1994) Autoimmune thyroid disorders and coeliac disease. Eur. J. Endocrinol. 130:137–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Cuoco L, et al. (1999) Prevalence and early diagnosis of coeliac disease in autoimmune thyroid disorders. Ital. J. Gastroenterol. Hepatol. 31:283–7.PubMedGoogle Scholar
  39. 39.
    Carroccio A, et al. (1999) Evidence of transient IgA anti-endomysial antibody positivity in a patient with Graves’ disease. Digestion. 60:86–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Han J-W, et al. (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41:1234–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Ståhl-Hallengren C, Jönsen A, Nived O, Sturfelt G. (2000) Incidence studies of systemic lupus erythematosus in Southern Sweden: increasing age, decreasing frequency of renal manifestations and good prognosis. J. Rheumatol. 27:685–91.PubMedGoogle Scholar
  42. 42.
    Johnson AE, Gordon C, Palmer RG, Bacon PA. (1995) The prevalence and incidence of systemic lupus erythematosus in Birmingham, England: relationship to ethnicity and country of birth. Arthritis Rheum. 38:551–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Alarcón-Segovia D, et al. (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52:1138–47.PubMedCrossRefGoogle Scholar
  44. 44.
    Deapen D, et al. (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 35:311–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Tsao BP. (2004) Update on human systemic lupus erythematosus genetics. Curr. Opin. Rheumatol. 16:513–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang Y, et al. (2007) Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am. J. Hum. Genet. 80:1037–54.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hashimoto H, et al. (1985) HLA antigens associated with systemic lupus erythematosus in Japan. J. Rheumatol. 12:919–23.PubMedGoogle Scholar
  48. 48.
    Hirose S, Ogawa S, Nishimura H, Hashimoto H, Shirai T. (1988) Association of HLA-DR2/DR4 heterozygosity with systemic lupus erythematosus in Japanese patients. J. Rheumatol. 15:1489–92.PubMedGoogle Scholar
  49. 49.
    Hong GH, et al. (1994) Association of complement C4 and HLA-DR alleles with systemic lupus erythematosus in Koreans. J. Rheumatol. 21:442–7.PubMedGoogle Scholar
  50. 50.
    Harley JB, et al. (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40:204–10.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fernando MMA, et al. (2007) Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS. Genet. 3:e192.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Harley ITW, Kaufman KM, Langefeld CD, Harley JB, Kelly JA. (2009) Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 10:285–90.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cassidy JT, Burt A, Petty R, Sullivan D. (1969) Selective IgA deficiency in connective tissue diseases. N. Engl. J. Med. 280:275.PubMedGoogle Scholar
  54. 54.
    Alarcón-Segovia D, Fishbein E. (1972) Serum immunoglobulins in systemic lupus erythematosus. Clin. Sci. 43:121–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Gershwin ME, Blaese RM, Steinberg AD, Wistar R Jr, Strober W. (1976) Antibodies to nucleic acids in congenital immune deficiency states. J. Pediatr. 89:377–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Yewdall V, et al. (1983) Systemic lupus erythematosus and IgA deficiency. J. Clin. Lab. Immunol. 10:13–8.PubMedGoogle Scholar
  57. 57.
    Kuştimur S, Gülmezoğlu E. (1985) Selective IgA deficiency in patients with systemic lupus erythematosus and rheumatoid arthritis [in Turkish]. Mikrobiyol. Bul. 19:190–9.PubMedGoogle Scholar
  58. 58.
    Rifle G, et al. (1988) Selective IgA deficiency and systemic lupus erythematosus. Ann. Med. Interne. (Paris). 139:134–7.PubMedGoogle Scholar
  59. 59.
    Calabozo Raluy M, Gamir Gamir ML, Medina Luezas J, Diaz-Miguel Pérez C, Alonso Ruiz A. (1990) Selective deficiency of IgA in autoimmune diseases [in Spanish]. Rev. Clin. Esp. 186:163–5.PubMedGoogle Scholar
  60. 60.
    Kaufman LD, Heinicke MH, Hamburger M, Gorevic PD. (1991) Male lupus: prevalence of IgA deficiency, 7S IgM and abnormalities of reticuloendothelial system Fc-receptor function. Clin. Exp. Rheumatol. 9:265–9.PubMedGoogle Scholar
  61. 61.
    Rankin EC, Isenberg DA. (1997) IgA deficiency and SLE: prevalence in a clinic population and a review of the literature. Lupus. 6:390–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Cassidy JT, Kitson RK, Selby CL. (2007) Selective IgA deficiency in children and adults with systemic lupus erythematosus. Lupus. 16:647–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Mantovani APF, Monclaro MP, Skare TL. (2010) Prevalence of IgA deficiency in adult systemic lupus erythematosus and the study of the association with its clinical and autoantibody profiles. Rev. Bras. Reumatol. 50:273–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Bachmann R. (1965) Studies on the serum gamma-A-globulin level. 3. The frequency of A-gamma-A-globulinemia. Scand. J. Clin. Lab. Invest. 17:316–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Claman HN, Merrill DA, Peakman D, Robinson A. (1970) Isolated severe gamma A deficiency: immunoglobulin levels, clinical disorders, and chromosome studies. J. Lab. Clin. Med. 75:307–15.PubMedGoogle Scholar
  66. 66.
    Bach GL, Pillary VK, Kark RM. (1971) Immunoglobulin (IgA) deficiency in systemic lupus erythematosus: report of a case and family studies. Acta. Rheumatol. Scand. 17:63–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Cleland LG, Bell DA. (1978) The occurrence of systemic lupus erythematosus in two kindreds in association with selective IGA deficiency. J. Rheumatol. 5:288–93.PubMedGoogle Scholar
  68. 68.
    Woo P, Pereira RS, Lever AM. (1984) Persistent immunoglobulin deficiency after prednisolone and antiepileptic therapy in a C2 deficient patient with lupus-like syndrome. J. Rheumatol. 11:828–31.PubMedGoogle Scholar
  69. 69.
    Katial RK, Hatch RM, Baker MR. (1994) Cardiac tamponade and recurrent upper respiratory tract infections in a 22-year-old woman. Ann. Allergy. 73:473–7.PubMedGoogle Scholar
  70. 70.
    Arai J, et al. (1998) Non-X-linked hyper-IgM syndrome with systemic lupus erythematosus. Clin. Exp. Rheumatol. 16:84–6.PubMedGoogle Scholar
  71. 71.
    John M, Lam M, Latham B, Saker B, French MA. (2000) Nephrotic syndrome in a patient with IgA deficiency-associated mesangioproliferative glomerulonephritis. Pathology. 32:56–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Desar IME, Weemaes CMR, van Deuren M, van der Meer JWM. (2007) Reversible hypogamma-globulinaemia. Neth. J. Med. 65:381–5.PubMedGoogle Scholar
  73. 73.
    Feng L. (1992) Epidemiological study of selective IgA deficiency among 6 nationalities in China [in Chinese]. Zhonghua. Yi. Xue. Za. Zhi. 72:88–90,128.PubMedGoogle Scholar
  74. 74.
    Smyth DJ, et al. (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359:2767–77.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Karvonen M, Tuomilehto J, Libman I, LaPorte R. (1993) A review of the recent epidemiological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus. World Health Organization DIAMOND Project Group. Diabetologia. 36:883–92.PubMedCrossRefGoogle Scholar
  76. 76.
    EURODIAB ACE Study Group. (2000) Variation and trends in incidence of childhood diabetes in Europe. Lancet. 355:873–6.CrossRefGoogle Scholar
  77. 77.
    Onkamo P, Väänänen S, Karvonen M, Tuomilehto J. (1999) Worldwide increase in incidence of type I diabetes: the analysis of the data on published incidence trends. Diabetologia. 42:1395–403.PubMedCrossRefGoogle Scholar
  78. 78.
    DIAMOND Project Group. (2006) Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet. Med. 23:857–66.CrossRefGoogle Scholar
  79. 79.
    Virtanen SM, Knip M. (2003) Nutritional risk predictors of beta cell autoimmunity and type 1 diabetes at a young age. Am. J. Clin. Nutr. 78:1053–67.PubMedCrossRefGoogle Scholar
  80. 80.
    Bach J-F. (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med 347:911–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Zipitis CS, Akobeng AK. (2008) Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and metaanalysis. Arch. Dis. Child. 93:512–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Kyvik KO, Green A, Beck-Nielsen H. (1995) Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ. 311:913–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Redondo MJ, et al. (2001) Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia. 44:354–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 52:1052–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Condon J, et al. (2008) A study of diabetes mellitus within a large sample of Australian twins. Twin Res. Hum. Genet. 11:28–40.PubMedCrossRefGoogle Scholar
  86. 86.
    Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. (2008) Concordance for islet autoimmunity among monozygotic twins. N. Engl. J. Med 359:2849–50.PubMedCrossRefGoogle Scholar
  87. 87.
    WHO Multinational Project for Childhood Diabetes Group. (1991) Familial insulin-dependent diabetes mellitus (IDDM) epidemiology: standardization of data for the DIAMOND Project. Bull. World Health Organ. 69:767–77.Google Scholar
  88. 88.
    Anaya J-M, et al. (2006) Familial clustering of autoimmune diseases in patients with type 1 diabetes mellitus. J. Autoimmun. 26:208–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Steenkiste A, et al. (2007) 14th International HLA and Immunogenetics Workshop: report on the HLA component of type 1 diabetes. Tissue Antigens. 69 Suppl 1:214–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Noble JA, Valdes AM, Thomson G, Erlich HA. (2000) The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes. 49:121–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Howson JMM, Walker NM, Clayton D, Todd JA. (2009) Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A. Diabetes Obes. Metab. 11Suppl 1:31–45.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Valdes AM, Thomson G. (2009) Several loci in the HLA class III region are associated with T1D risk after adjusting for DRB1-DQB1. Diabetes Obes. Metab. 11 Suppl 1:46–52.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pociot F, et al. (2010) Genetics of type 1 diabetes: what’s next? Diabetes. 59:1561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cerutti F, et al. (1988) Selective IgA deficiency in juvenile-onset insulin-dependent diabetes mellitus [in Italian]. Pediatr. Med. Chir. 10:197–201.PubMedGoogle Scholar
  95. 95.
    Liblau RS, Caillat-Zucman S, Fischer AM, Bach JF, Boitard C. (1992) The prevalence of selective IgA deficiency in type 1 diabetes mellitus. APMIS. 100:709–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Smith WI, Rabin BS, Huellmantel A, Van Thiel DH, Drash A. (1978) Immunopathology of juvenile-onset diabetes mellitus. I. IgA deficiency and juvenile diabetes. Diabetes. 27:1092–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Fraser-Reynolds KA, Butzner JD, Stephure DK, Trussell RA, Scott RB. (1998) Use of immunoglobulin A-antiendomysial antibody to screen for celiac disease in North American children with type 1 diabetes. Diabetes Care. 21:1985–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Picarelli A, et al. (2005) Anti-endomysial antibody of IgG1 isotype detection strongly increases the prevalence of coeliac disease in patients affected by type I diabetes mellitus. Clin. Exp. Immunol. 142:111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ferguson A, MacDonald TT, McClure JP, Holden RJ. (1975) Cell-mediated immunity to gliadin within the small-intestinal mucosa in coeliac disease. Lancet. 1:895–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Bingley PJ, et al. (2004) Undiagnosed coeliac disease at age seven: population based prospective birth cohort study. BMJ. 328:322–3.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Fasano A, et al. (2003) Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch. Intern. Med. 163:286–92.PubMedCrossRefGoogle Scholar
  102. 102.
    Mäki M, et al. (2003) Prevalence of celiac disease among children in Finland. N. Engl. J. Med. 348:2517–24.PubMedCrossRefGoogle Scholar
  103. 103.
    Tatar G, et al. (2004) Screening of tissue transglutaminase antibody in healthy blood donors for celiac disease screening in the Turkish population. Dig. Dis. Sci. 49:1479–84.PubMedCrossRefGoogle Scholar
  104. 104.
    West J, et al. (2003) Seroprevalence, correlates, and characteristics of undetected coeliac disease in England. Gut 52:960–5.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Catassi C, et al. (1999) Why is coeliac disease endemic in the people of the Sahara? Lancet. 354:647–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Cummins AG, Roberts-Thomson IC. (2009) Prevalence of celiac disease in the Asia-Pacific region. J. Gastroenterol. Hepatol. 24:1347–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Mustalahti K, et al. (2010) The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann. Med. 42:587–95.PubMedCrossRefGoogle Scholar
  108. 108.
    Greco L, et al. (2002) The first large population based twin study of coeliac disease. Gut 50:624–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nisticò L, et al. (2006) Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 55:803–8.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Liu E, Rewers M, Eisenbarth GS. (2005) Genetic testing: who should do the testing and what is the role of genetic testing in the setting of celiac disease? Gastroenterology. 128:S33–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Petronzelli F, et al. (1997) Genetic contribution of the HLA region to the familial clustering of coeliac disease. Ann. Hum. Genet. 61:307–17.PubMedCrossRefGoogle Scholar
  112. 112.
    Trynka G, Wijmenga C, van Heel DA. (2010) A genetic perspective on coeliac disease. Trends Mol. Med. 16:537–50.PubMedCrossRefGoogle Scholar
  113. 113.
    Lavö B, Knutson F, Knutson L, Sjöberg O, Hällgren R. (1992) Jejunal secretion of secretory immunoglobulins and gliadin antibodies in celiac disease. Dig. Dis. Sci. 37:53–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Heneghan MA, Stevens FM, Cryan EM, Warner RH, McCarthy CF. (1997) Celiac sprue and immunodeficiency states: a 25-year review. J. Clin. Gastroenterol. 25:421–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Cataldo F, Marino V, Ventura A, Bottaro G, Corazza GR. (1998) Prevalence and clinical features of selective immunoglobulin A deficiency in coeliac disease: an Italian multicentre study. Italian Society of Paediatric Gastroenterology and Hepatology (SIGEP) and “Club del Tenue” Working Groups on Coeliac Disease. Gut 42:362–5.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Demir H, Yüce A, Koçak N, Ozen H, Gürakan F. (2000) Celiac disease in Turkish children: presentation of 104 cases. Pediatr. Int. 42:483–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Cataldo F, Marino V, Bottaro G, Greco P, Ventura A. (1997) Celiac disease and selective immunoglobulin A deficiency. J. Pediatr. 131:306–8.PubMedCrossRefGoogle Scholar
  118. 118.
    McGowan KE, Lyon ME, Butzner JD. (2008) Celiac disease and IgA deficiency: complications of serological testing approaches encountered in the clinic. Clin. Chem. 54:1203–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Klemola T. (1987) Deficiency of immunoglobulin A. Ann. Clin. Res. 19:248–57.PubMedGoogle Scholar
  120. 120.
    Collin P, et al. (1992) Selective IgA deficiency and coeliac disease. Scand. J. Gastroenterol. 27:367–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Meini A, et al. (1996) Prevalence and diagnosis of celiac disease in IgA-deficient children. Ann. Allergy Asthma Immunol. 77:333–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Prince HE, Norman GL, Binder WL. (2000) Immunoglobulin A (IgA) deficiency and alternative celiac disease-associated antibodies in sera submitted to a reference laboratory for endomysial IgA testing. Clin. Diagn. Lab. Immunol. 7:192–6.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Lenhardt A, et al. (2004) Role of human-tissue transglutaminase IgG and anti-gliadin IgG antibodies in the diagnosis of coeliac disease in patients with selective immunoglobulin A deficiency. Dig. Liver Dis. 36:730–4.PubMedCrossRefGoogle Scholar
  124. 124.
    Sinclair D, Saas M, Turk A, Goble M, Kerr D. (2006) Do we need to measure total serum IgA to exclude IgA deficiency in coeliac disease? J. Clin. Pathol. 59:736–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Bilbao JR, et al. (2002) Immunoglobulin G autoantibodies against tissue-transglutaminase: a sensitive, cost-effective assay for the screening of celiac disease. Autoimmunity. 35:255–9.PubMedGoogle Scholar
  126. 126.
    Martín-Pagola A, et al. (2007) Two-year follow-up of anti-transglutaminase autoantibodies among celiac children on gluten-free diet: comparison of IgG and IgA. Autoimmunity. 40:117–21.PubMedCrossRefGoogle Scholar
  127. 127.
    Bansal AK, Lindemann MJ, Ramsperger V, Kumar V. (2009) Celiac G+ antibody assay for the detection of autoantibodies in celiac disease. Ann. N. Y. Acad. Sci. 1173:36–40.PubMedCrossRefGoogle Scholar
  128. 128.
    Korponay-Szabó IR, et al. (2003) Elevation of IgG antibodies against tissue transglutaminase as a diagnostic tool for coeliac disease in selective IgA deficiency. Gut 52:1567–71.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Drachman DB. (1994) Myasthenia gravis. N. Engl. J. Med. 330:1797–810.PubMedCrossRefGoogle Scholar
  130. 130.
    Hoch W, et al. (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 7:365–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Vaiopoulos G, et al. (1994) The association of systemic lupus erythematosus and myasthenia gravis. Postgrad. Med. J. 70:741–5.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bhinder S, Majithia V, Harisdangkul V. (2006) Myasthenia gravis and systemic lupus erythematosus: truly associated or coincidental: two case reports and review of the literature. Clin. Rheumatol. 25:555–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Hrycek A. (2009) Systemic lupus erythematosus and myasthenia gravis. Pol. Arch. Med. Wewn. 119:582–5.PubMedGoogle Scholar
  134. 134.
    Christensen PB, et al. (1995) Associated autoimmune diseases in myasthenia gravis: a population-based study. Acta. Neurol. Scand. 91:192–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Sahay BM, Blendis LM, Greene R. (1965) Relation between myasthenia gravis and thyroid disease. Br. Med. J. 1:762–5.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Toth C, McDonald D, Oger J, Brownell K. (2006) Acetylcholine receptor antibodies in myasthenia gravis are associated with greater risk of diabetes and thyroid disease. Acta. Neurol. Scand. 114:124–32.PubMedCrossRefGoogle Scholar
  137. 137.
    Kanazawa M, Shimohata T, Tanaka K, Nishizawa M. (2007) Clinical features of patients with myasthenia gravis associated with autoimmune diseases. Eur. J. Neurol. 14:1403–4.PubMedCrossRefGoogle Scholar
  138. 138.
    Kalb B, Matell G, Pirskanen R, Lambe M. (2002) Epidemiology of myasthenia gravis: a population-based study in Stockholm, Sweden. Neuroepidemiology. 21:221–5.PubMedCrossRefGoogle Scholar
  139. 139.
    McGrogan A, Sneddon S, de Vries CS. (2010) The incidence of myasthenia gravis: a systematic literature review. Neuroepidemiology. 34:171–83.PubMedCrossRefGoogle Scholar
  140. 140.
    Ramanujam R, Pirskanen R, Ramanujam S, Hammarström L. (2011) Utilizing twins concordance rates to infer the predisposition to myasthenia gravis. Twin Res. Hum. Genet. 14:129–36.PubMedCrossRefGoogle Scholar
  141. 141.
    Pirskanen R, Tiilikainen A, Hokkanen E. (1972) Histocompatibility (HL-A) antigens associated with myasthenia gravis: a preliminary report. Ann. Clin. Res. 4:304–6.PubMedGoogle Scholar
  142. 142.
    Kaakinen A, Pirskanen R, Tiilikainen A. (1975) LD antigens associated with HL-A8 and myasthenia gravis. Tissue Antigens. 6:175–12.PubMedCrossRefGoogle Scholar
  143. 143.
    Compston DA, Vincent A, Newsom-Davis J, Batchelor JR. (1980) Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain. 103:579–601.PubMedCrossRefGoogle Scholar
  144. 144.
    Giraud M, et al. (2001) Linkage of HLA to myasthenia gravis and genetic heterogeneity depending on anti-titin antibodies. Neurology. 57:1555–60.PubMedCrossRefGoogle Scholar
  145. 145.
    Giraud M, Vandiedonck C, Garchon H-J. (2008) Genetic factors in autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 1132:180–92.PubMedCrossRefGoogle Scholar
  146. 146.
    Arnett FC, et al. (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31:315–24.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Isennock M, Grosel JM. (2011) Juvenile idiopathic arthritis: can you recognize this complex diagnosis? JAAPA. 24:22–7.PubMedGoogle Scholar
  148. 148.
    Harris ED. (1990) Rheumatoid arthritis: pathophysiology and implications for therapy. N. Engl. J. Med. 322:1277–89.PubMedCrossRefGoogle Scholar
  149. 149.
    Modesto C, et al. (2010) Incidence and prevalence of juvenile idiopathic arthritis in Catalonia (Spain). Scand. J. Rheumatol. 39:472–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Andersson Gäre B. (1999) Juvenile arthritis: who gets it, where and when? A review of current data on incidence and prevalence. Clin. Exp. Rheumatol. 17:367–74.PubMedGoogle Scholar
  151. 151.
    Phelan JD, Thompson SD, Glass DN. (2006) Susceptibility to JRA/JIA: complementing general autoimmune and arthritis traits. Genes Immun. 7:1–10.PubMedCrossRefGoogle Scholar
  152. 152.
    Silman AJ, et al. (1993) Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32:903–7.PubMedCrossRefGoogle Scholar
  153. 153.
    Källberg H, et al. (2011) Smoking is a major preventable risk factor for rheumatoid arthritis: estimations of risks after various exposures to cigarette smoke. Ann. Rheum. Dis. 70:508–11.PubMedCrossRefGoogle Scholar
  154. 154.
    Roudier J. (2006) HLA-DRB1 genes and extraarticular rheumatoid arthritis. Arthritis Res. Ther. 8:103.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    El-Gabalawy HS, et al. (1999) Association of HLA alleles and clinical features in patients with synovitis of recent onset. Arthritis Rheum. 42:1696–705.PubMedCrossRefGoogle Scholar
  156. 156.
    Glass DN, Litvin DA. (1980) Heterogeneity of HLA associations in systemic onset juvenile rheumatoid arthritis. Arthritis Rheum. 23:796–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Avila-Portillo LM, Vargas-Alarcón G, Andrade F, Alarcón-Segovia D, Granados J. (1994) Linkage disequilibrium of HLA-DR3 and HLA-DR4 with HLA-B alleles in Mexican patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 12:497–502.PubMedGoogle Scholar
  158. 158.
    Hajeer AH, Worthington J, Silman AJ, Ollier WE. (1996) Association of tumor necrosis factor microsatellite polymorphisms with HLA-DRB1*04-bearing haplotypes in rheumatoid arthritis patients. Arthritis Rheum. 39:1109–14.PubMedCrossRefGoogle Scholar
  159. 159.
    Lee H-S, et al. (2008) Several regions in the major histocompatibility complex confer risk for anti-CCP-antibody positive rheumatoid arthritis, independent of the DRB1 locus. Mol. Med. 14:293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Miller ML, et al. (1984) Inherited predisposition to iridocyclitis with juvenile rheumatoid arthritis: selectivity among HLA-DR5 haplotypes. Proc. Natl. Acad. Sci. U. S. A. 81:3539–42.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Säilä H, et al. (2004) HLA and susceptibility to juvenile idiopathic arthritis: a study of affected sibpairs in an isolated Finnish population. J. Rheumatol. 31:2281–5.PubMedGoogle Scholar
  162. 162.
    Hollenbach JA, et al. (2010) Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 62:1781–91.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Begovich AB, et al. (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75:330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Suzuki A, et al. (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34:395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Gregersen PK. (2010) Susceptibility genes for rheumatoid arthritis: a rapidly expanding harvest. Bull. NYU Hosp. Jt. Dis. 68:179–82.PubMedGoogle Scholar
  166. 166.
    Miterski B, et al. (2004) Complex genetic predisposition in adult and juvenile rheumatoid arthritis. BMC Genet. 5:2.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Prahalad S. (2004) Genetics of juvenile idiopathic arthritis: an update. Curr. Opin. Rheumatol. 16:588–94.PubMedCrossRefGoogle Scholar
  168. 168.
    Zhernakova A, van Diemen CC, Wijmenga C. (2009) Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 10:43–55.PubMedCrossRefGoogle Scholar
  169. 169.
    Appenzeller S, Pallone AT, Natalin RA, Costallat LTL. (2009) Prevalence of thyroid dysfunction in systemic lupus erythematosus. J. Clin. Rheumatol. 15:117–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Antonelli A, et al. (2010) Prevalence of thyroid dysfunctions in systemic lupus erythematosus. Metab. Clin. Exp. 59:896–900.PubMedCrossRefGoogle Scholar
  171. 171.
    Candore G, Lio D, Colonna Romano G, Caruso C. (2002) Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun. Rev. 1:29–35.PubMedCrossRefGoogle Scholar
  172. 172.
    Barcellos LF, et al. (2009) High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS. Genet. 5:e1000696.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Eike MC, Becker T, Humphreys K, Olsson M, Lie BA. (2009) Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B. Genes Immun. 10:56–67.PubMedCrossRefGoogle Scholar
  174. 174.
    Cheung YH, Watkinson J, Anastassiou D. (2011) Conditional meta-analysis stratifying on detailed HLA genotypes identifies a novel type 1 diabetes locus around TCF19 in the MHC. Hum. Genet. 129:161–76.PubMedCrossRefGoogle Scholar
  175. 175.
    Fernando MMA, et al. (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS. Genet. 4:e1000024.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Cucca F, et al. (1998) Evaluation of IgA deficiency in Sardinians indicates a susceptibility gene is encoded within the HLA class III region. Clin. Exp. Immunol. 111:76–80.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Schroeder HW Jr, et al. (1998) Susceptibility locus for IgA deficiency and common variable immunodeficiency in the HLA-DR3, -B8, -A1 haplotypes. Mol. Med. 4:72–86.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    De la Concha EG, et al. (2002) MHC susceptibility genes to IgA deficiency are located in different regions on different HLA haplotypes. J. Immunol. 169:4637–43.PubMedCrossRefGoogle Scholar
  179. 179.
    Cree BAC, et al. (2010) A major histocompatibility class I locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1*15:01. PLoS ONE. 5:e11296.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Vignal C, et al. (2009) Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates two non-DRB1 loci. Arthritis Rheum. 60:53–62.PubMedCrossRefGoogle Scholar
  181. 181.
    Steck AK, Rewers MJ. (2011) Genetics of type 1 diabetes. Clin. Chem. 57:176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Buin D, Truedsson L, Hammarström L, Smith CI, Sjöholm AG. (1991) C4 polymorphism and major histocompatibility complex haplotypes in IgA deficiency: association with C4A null haplotypes. Exp. Clin. Immunogenet. 8:233–41.Google Scholar
  183. 183.
    Boodhoo A, et al. (2004) A promoter polymorphism in the central MHC gene, IKBL, influences the binding of transcription factors USF1 and E47 on disease-associated haplotypes. Gene Expr. 12:1–11.PubMedCrossRefGoogle Scholar
  184. 184.
    Price P, et al. (2004) Polymorphisms at positions −22 and −348 in the promoter of the BAT1 gene affect transcription and the binding of nuclear factors. Hum. Mol. Genet. 13:967–74.PubMedCrossRefGoogle Scholar
  185. 185.
    Morzycka-Wroblewska E, Munshi A, Ostermayer M, Harwood JI, Kagnoff MF. (1997) Differential expression of HLA-DQA1 alleles associated with promoter polymorphism. Immunogenetics. 45:163–70.PubMedCrossRefGoogle Scholar
  186. 186.
    Yan Z, et al. (2007) Resequencing of the human major histocompatibility complex in patients with rheumatoid arthritis and healthy controls in Alaska Natives of Southeast Alaska. Tissue Antigens. 70:487–94.PubMedCrossRefGoogle Scholar
  187. 187.
    Asahina Y, et al. (2008) Potential relevance of cytoplasmic viral sensors and related regulators involving innate immunity in antiviral response. Gastroenterology. 134:1396–405.PubMedCrossRefGoogle Scholar
  188. 188.
    Liu S, et al. (2009) IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum. Mol. Genet. 18:358–65.PubMedCrossRefGoogle Scholar
  189. 189.
    Chistiakov DA. (2010) Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review. Viral Immunol. 23:3–15.PubMedCrossRefGoogle Scholar
  190. 190.
    Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 324:387–9.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Gateva V, et al. (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41:1228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Gono T, et al. (2010) Interferon-induced helicase (IFIH1) polymorphism with systemic lupus erythematosus and dermatomyositis/polymyositis. Mod. Rheumatol. 20:466–70.PubMedCrossRefGoogle Scholar
  193. 193.
    Sutherland A, et al. (2007) Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J. Clin. Endocrinol. Metab. 92:3338–41.PubMedCrossRefGoogle Scholar
  194. 194.
    Zhao Z-F, et al. (2007) The A946T polymorphism in the interferon induced helicase gene does not confer susceptibility to Graves’ disease in Chinese population. Endocrine. 32:143–7.PubMedCrossRefGoogle Scholar
  195. 195.
    Penna-Martinez M, et al. (2009) The rs1990760 polymorphism within the IFIH1 locus is not associated with Graves’ disease, Hashimoto’s thyroiditis and Addison’s disease. BMC Med. Genet. 10:126.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Todd JA, et al. (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39:857–64.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    International Multiple Sclerosis Genetics Consortium (IMSGC). (2009) The expanding genetic overlap between multiple sclerosis and type I diabetes (2009) Genes Immun. 10:11–4.CrossRefGoogle Scholar
  198. 198.
    Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 447:661–78.CrossRefGoogle Scholar
  199. 199.
    Hakonarson H, et al. (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 448:591–4.PubMedCrossRefGoogle Scholar
  200. 200.
    Zoledziewska M, et al. (2009) Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun. 10:15–7.PubMedCrossRefGoogle Scholar
  201. 201.
    Wu X, et al. (2009) Intron polymorphism in the KIAA0350 gene is reproducibly associated with susceptibility to type 1 diabetes (T1D) in the Han Chinese population. Clin. Endocrinol. (Oxf). 71:46–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Reddy MPL, et al. (2011) Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun. 12:208–12.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Martinez A, et al. (2010) Chromosomal region 16p13: further evidence of increased predisposition to immune diseases. Ann. Rheum. Dis. 69:309–11.PubMedCrossRefGoogle Scholar
  204. 204.
    Dubois PCA, et al. (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42:295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Dema B, et al. (2009) Autoimmune disease association signals in CIITA and KIAA0350 are not involved in celiac disease susceptibility. Tissue Antigens. 73:326–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Awata T, et al. (2009) Association of type 1 diabetes with two loci on 12q13 and 16p13 and the influence coexisting thyroid autoimmunity in Japanese. J. Clin. Endocrinol. Metab. 94:231–5.PubMedCrossRefGoogle Scholar
  207. 207.
    Hodge SE, et al. (2006) Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves’ disease. Thyroid. 16:351–5.PubMedCrossRefGoogle Scholar
  208. 208.
    Takahashi M, Kimura A. (2010) HLA and CTLA4 polymorphisms may confer a synergistic risk in the susceptibility to Graves’ disease. J. Hum. Genet. 55:323–6.PubMedCrossRefGoogle Scholar
  209. 209.
    Kula D, et al. (2006) Interaction of HLA-DRB1 alleles with CTLA-4 in the predisposition to Graves’ disease: the impact of DRB1*07. Thyroid. 16:447–53.PubMedCrossRefGoogle Scholar
  210. 210.
    Aminkeng F, et al. (2009) IFIH1 gene polymorphisms in type 1 diabetes: genetic association analysis and genotype-phenotype correlation in the Belgian population. Hum. Immunol. 70:706–10.PubMedCrossRefGoogle Scholar
  211. 211.
    Smyth DJ, et al. (2008) PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes. 57:1730–7.PubMedCrossRefGoogle Scholar
  212. 212.
    Steck AK, et al. (2006) Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr. Diabetes. 7:274–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Hermann R, et al. (2006) Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia. 49:1198–208.PubMedCrossRefGoogle Scholar
  214. 214.
    Bjørnvold M, et al. (2006) FOXP3 polymorphisms in type 1 diabetes and coeliac disease. J. Autoimmun. 27:140–4.PubMedCrossRefGoogle Scholar
  215. 215.
    Taylor KE, et al. (2011) Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS. Genet. 7:e1001311.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Hoddinott S, Dornan J, Bear JC, Farid NR. (1982) Immunoglobulin levels, immunodeficiency and HLA in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 23:326–9.PubMedCrossRefGoogle Scholar
  217. 217.
    Bertrams J, Schoeps L, Baur MP, Luboldt W, van Loghem E. (1983) IgG and IgA heavy chain allotypes in type 1 diabetes. J. Immunogenet. 10:305–10.PubMedCrossRefGoogle Scholar
  218. 218.
    Page SR, Lloyd CA, Hill PG, Peacock I, Holmes GK. (1994) The prevalence of coeliac disease in adult diabetes mellitus. QJM 87:631–7.PubMedGoogle Scholar
  219. 219.
    Acerini CL, et al. (1998) Coeliac disease in children and adolescents with IDDM: clinical characteristics and response to gluten-free diet. Diabet. Med. 15:38–44.PubMedCrossRefGoogle Scholar
  220. 220.
    Schober E, et al. (2000) Screening by antiendomysium antibody for celiac disease in diabetic children and adolescents in Austria. J. Pediatr. Gastroenterol. Nutr. 30:391–6.PubMedCrossRefGoogle Scholar
  221. 221.
    Laadhar L, et al. (2006) Prevalence of celiac disease serological markers in Tunisian type 1 diabetic adults [in French]. Ann. Biol. Clin. (Paris). 64:439–44.PubMedGoogle Scholar
  222. 222.
    Sayarifard F, et al. (2010) Evaluation of serum IgA levels in Iranian patients with type 1 diabetes mellitus. Acta Diabetol. 2010, Apr 22. [Epub ahead of print].Google Scholar
  223. 223.
    Sardi J, Casellas F, de Torres I, Malagelada JR. (2000) Clinical relevance of immunoglobulin A deficiency in celiac disease [in Spanish]. Med. Clin. (Barc). 115:687–9.PubMedCrossRefGoogle Scholar
  224. 224.
    Bundey S, Doniach D, Soothill JF. (1972) Immunological studies in patients with juvenileonset myasthenia gravis and in their relatives. Clin. Exp. Immunol. 11:321–32.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Lisak RP, Zweiman B. (1976) Serum immunogloblin levels in myasthenia gravis, polymyositis, and dermatomyositis. J. Neurol. Neurosurg. Psychiatr. 39:34–7.CrossRefGoogle Scholar
  226. 226.
    Bramis J, Sloane C, Papatestas A, Genkins G, Aufses A. (1976) Serum-IgA in myasthenia gravis. Lancet. 307:1243–4.CrossRefGoogle Scholar
  227. 227.
    Behan P, Simpson J, Behan WH. (1976) Decreased serum-IgA in myasthenia gravis. Lancet. 307:593–4.CrossRefGoogle Scholar
  228. 228.
    Liblau R, Fischer AM, Shapiro DE, Morel E, Bach JF. (1992) The frequency of selective IgA deficiency in myasthenia gravis. Neurology. 42:516–8.PubMedCrossRefGoogle Scholar
  229. 229.
    Bluestone R, Goldberg LS, Katz RM, Marchesano JM, Calabro JJ. (1970) Juvenile rheumatoid arthritis: a serologic survey of 200 consecutive patients. J. Pediatr. 77:98–102.PubMedCrossRefGoogle Scholar
  230. 230.
    Panush RS, et al. (1972) Juvenile rheumatoid arthritis: cellular hypersensitivity and selective IgA deficiency. Clin. Exp. Immunol. 10:103–15.PubMedPubMedCentralGoogle Scholar
  231. 231.
    Salmi TT, Schmidt E, Laaksonen AL, Anttila R, Kouvalainen K. (1973) Levels of serum immunoglobulins in juvenile rheumatoid arthritis. Ann. Clin. Res. 5:395–7.PubMedGoogle Scholar
  232. 232.
    Cassidy JT, Petty RE, Sullivan DB. (1973) Abnormalities in the distribution of serum immunoglobulin concentrations in juvenile rheumatoid arthritis. J. Clin. Invest. 52:1931–6.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Cassidy JT, Petty RE, Sullivan DB. (1977) Occurrence of selective iga deficiency in children with juvenile rheumatoid arthritis. Arthritis and Rheumatism. 20:181–3.Google Scholar
  234. 234.
    Barkley DO, Hohermuth HJ, Howard A, Webster DB, Ansell BM. (1979) IgA deficiency in juvenile chronic polyarthritis. J. Rheumatol. 6:219–24.PubMedGoogle Scholar
  235. 235.
    Pelkonen P, Savilahti E, Mäkelä AL. (1983) Persistent and transient IgA deficiency in juvenile rheumatoid arthritis. Scand. J. Rheumatol. 12:273–9.PubMedCrossRefGoogle Scholar
  236. 236.
    Moradinejad MH, et al. (2011) Prevalence of IgA deficiency in children with juvenile rheumatoid arthritis. Iran J. Allergy Asthma Immunol. 10:35–40.PubMedGoogle Scholar
  237. 237.
    Natvig JB, Harboe M, Fausa O, Tveit A. (1971) Family studies in individuals with selective absence of gamma-A-globulin. Clin. Exp. Immunol. 8:229–36.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Thakar YS, Chande C, Dhanvijay AG, Pande S, Saoji AM. (1997) Analysis of immunoglobulin deficiency cases: a five year study. Indian J. Pathol. Microbiol. 40:309–13.PubMedGoogle Scholar
  239. 239.
    Badcock LJ, Clarke S, Jones PW, Dawes PT, Mattey DL. (2003) Abnormal IgA levels in patients with rheumatoid arthritis. Ann. Rheum. Dis. 62:83–4.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Ning Wang
    • 1
  • Nan Shen
    • 2
  • Timothy J. Vyse
    • 3
  • Vidya Anand
    • 3
  • Iva Gunnarson
    • 4
  • Gunnar Sturfelt
    • 5
  • Solbritt Rantapää-Dahlqvist
    • 6
  • Kerstin Elvin
    • 7
  • Lennart Truedsson
    • 8
  • Bengt A. Andersson
    • 9
  • Charlotte Dahle
    • 10
  • Eva Örtqvist
    • 11
  • Peter K. Gregersen
    • 12
  • Timothy W. Behrens
    • 13
  • Lennart Hammarström
    • 1
  1. 1.Division of Clinical Immunology, Department of Laboratory MedicineKarolinska Institutet at Karolinska University Hospital HuddingeStockholmSweden
  2. 2.Department of Rheumatology, Renji HospitalJiaoTong University School of MedicineShanghaiChina
  3. 3.Section of Molecular Genetics and RheumatologyHammersmith HospitalLondonUK
  4. 4.Rheumatology Unit, Department of MedicineKarolinska University Hospital SolnaStockholmSweden
  5. 5.Department of RheumatologyLund University HospitalLundSweden
  6. 6.Department of RheumatologyUniversity HospitalUmeåSweden
  7. 7.Unit of Clinical Immunology, Department of Clinical Immunology and Transfusion MedicineKarolinska University Hospital HuddingeStockholmSweden
  8. 8.Department of Laboratory Medicine, Section of Microbiology, Immunology and GlycobiologyLund UniversityLundSweden
  9. 9.Department of ImmunologySahlgrenska AcademyGothenburgSweden
  10. 10.Clinical Immunology Unit, Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
  11. 11.Department of Woman and Child Health, Astrid Lindgren Children’s HospitalKarolinska University Hospital SolnaStockholmSweden
  12. 12.Robert S. Boas Center for Genomics and Human GeneticsFeinstein Institute for Medical ResearchManhassetUSA
  13. 13.Division of Immunology, Tissue Growth & Repair, Biomarker Discovery and Human GeneticsGenentechSouth San FranciscoUSA

Personalised recommendations