Advertisement

Molecular Medicine

, Volume 18, Issue 2, pp 149–158 | Cite as

The Interaction of ApoA-I and ABCA1 Triggers Signal Transduction Pathways to Mediate Efflux of Cellular Lipids

  • Guo-Jun Zhao
  • Kai Yin
  • Yu-chang Fu
  • Chao-Ke Tang
Review Article

Abstract

Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca2+, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Sciences Foundation of China (81170278, 81070220), Heng Yang Joint Funds of Hunan Provincial Natural Sciences Foundation of China (10JJ9019), and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions (2008–244) of Human Province, China.

References

  1. 1.
    Vergeer M, Holleboom AG, Kastelein JJ, Kuivenhoven JA. (2010) The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? J. Lipid Res. 51:2058–73.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yang R, et al. (2010) A genome-wide linkage scan identifies multiple quantitative trait loci for HDL-cholesterol levels in families with premature CAD and MI. J. Lipid Res. 51:1442–51.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fielding CJ, Fielding PE. (1995) Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36:211–28.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Pieters MN, Schouten D, Van Berkel TJ. (1994) In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport. Biochim. Biophys. Acta. 1225:125–34.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Duffy D, Rader DJ. (2006) Emerging therapies targeting high-density lipoprotein metabolism and reverse cholesterol transport. Circulation. 113:1140–50.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Niesor EJ, et al. (2010) Modulating cholesteryl ester transfer protein activity maintains efficient pre-beta-HDL formation and increases reverse cholesterol transport. J. Lipid Res. 51:3443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ye D, et al. (2010) ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis. Curr. Drug Targets. 12:647–60.CrossRefGoogle Scholar
  8. 8.
    Yancey PG, et al. (2003) Importance of different pathways of cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23:712–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Oram JF. (2003) HDL apolipoproteins and ABCA1: partners in the removal of excess cellular cholesterol. Arterioscler. Thromb. Vasc. Biol. 23:720–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wang N, Tall AR. (2003) Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23:1178–84.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Remaley AT, et al. (2001) Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem. Biophys. Res. Commun. 280:818–23.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yin K, Liao DF, Tang CK. (2010) ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol. Med. 16:438–49.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. (2011) HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 8:222–32.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nandedkar SD, et al. (2011) D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma. J. Lipid Res. 52:499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fitzgerald ML, et al. (2004) ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux. J. Lipid Res. 45:287–94.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Oram JF, Wolfbauer G, Vaughan AM, Tang C, Albers JJ. (2003) Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J. Biol. Chem. 278:52379–85.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang N, Silver DL, Costet P, Tall AR. (2000) Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J. Biol. Chem. 275:33053–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chambenoit O, et al. (2001) Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J. Biol. Chem. 276:9955–60.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Smith JD, Waelde C, Horwitz A, Zheng P. (2002) Evaluation of the role of phosphatidylserine translocase activity in ABCA1-mediated lipid efflux. J. Biol. Chem. 277:17797–803.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wang N, Silver DL, Thiele C, Tall AR. (2001) ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J. Biol. Chem. 276:23742–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chroni A, Liu T, Fitzgerald ML, Freeman MW, Zannis VI. (2004) Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1. Biochemistry. 43:2126–39.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hassan HH, et al. (2007) Identification of an ABCA1-dependent phospholipid-rich plasma membrane apolipoprotein A-I binding site for nascent HDL formation: implications for current models of HDL biogenesis. J. Lipid Res. 48: 2428–42.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Vedhachalam C, et al. (2007) ABCA1-induced cell surface binding sites for ApoA-I. Arterioscler. Thromb. Vasc. Biol. 27:1603–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Okuhira K, et al. (2010) Binding of PDZ-RhoGEF to ATP-binding cassette transporter A1 (ABCA1) induces cholesterol efflux through RhoA activation and prevention of transporter degradation. J. Biol. Chem. 285:16369–77.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vaughan AM, Tang C, Oram JF. (2009) ABCA1 mutants reveal an interdependency between lipid export function, apoA-I binding activity, and Janus kinase 2 activation. J. Lipid Res. 50:285–92.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Denis M, Landry YD, Zha X. (2008) ATP-binding cassette A1-mediated lipidation of apolipoprotein A-I occurs at the plasma membrane and not in the endocytic compartments. J. Biol. Chem. 283:16178–86.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Neufeld EB, et al. (2001) Cellular localization and trafficking of the human ABCA1 transporter. J. Biol. Chem. 276:27584–90.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Takahashi Y, Smith JD. (1999) Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway. Proc. Natl. Acad. Sci. U. S. A. 96:11358–63.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Heeren J, Weber W, Beisiegel U. (1999) Intracellular processing of endocytosed triglyceride-rich lipoproteins comprises both recycling and degradation. J. Cell Sci. 112 (Pt 3): 349–59.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Neufeld EB, et al. (2004) The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. J. Biol. i. 279:15571–8.Google Scholar
  31. 31.
    Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L. (2008) Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI. J Mol. Med. 86:171–83.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hassan HH, et al. (2008) Quantitative analysis of ABCA1-dependent compartmentalization and trafficking of apolipoprotein A-I: implications for determining cellular kinetics of nascent high density lipoprotein biogenesis. J. Biol. Chem. 283:11164–75.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Singaraja RR, et al. (2009) Palmitoylation of ATP-binding cassette transporter A1 is essential for its trafficking and function. Circ. Res. 105:138–47.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Faulkner LE, et al. (2008) An analysis of the role of a retroendocytosis pathway in ABCA1-mediated cholesterol efflux from macrophages. J. Lipid Res. 49:1322–32.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tang CK, et al. (2004) Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells. Acta. Biochim. Biophys. Sin. Shanghai. 36:218–26.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wang N, et al. (2003) A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest. 111:99–107.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Martinez LO, Agerholm-Larsen B, Wang N, Chen W, Tall AR. (2003) Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J. Biol. Chem. 278:37368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kasza I, et al. (2009) Model system for the analysis of cell surface expression of human ABCA1. BMC Cell Biol. 10: 93PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Imajoh S, Kawasaki H, Suzuki K. (1986) The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol. J. Biochem. 99:1281–4.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Arakawa R, Yokoyama S. (2002) Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J. Biol. Chem. 277:22426–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lu R, Arakawa R, Ito-Osumi C, Iwamoto N, Yokoyama S. (2008) ApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation. Arterioscler. Thromb. Vasc. Biol. 28: 1820–4.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Francis GA, Knopp RH, Oram JF. (1995) Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease. J. Clin. Invest. 96:78–87.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Delgado-Lista J, et al. (2010) ABCA1 gene variants regulate postprandial lipid metabolism in healthy men. Arterioscler. Thromb. Vasc. Biol. 30:1051–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mulya A, et al. (2008) Initial interaction of apoA-I with ABCA1 impacts in vivo metabolic fate of nascent HDL. J. Lipid Res. 49:2390–401.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cavelier C, Rohrer L, von Eckardstein A. (2006) ATP-Binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells. Circ. Res. 99:1060–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Abe-Dohmae S, et al. (2000) Characterization of apolipoprotein-mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry. 39:11092–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Oram JF, Lawn RM, Garvin MR, Wade DP. (2000) ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem. 275:34508–11.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bortnick AE, et al. (2000) The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J. Biol. Chem. 275: 28634–40.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Haidar B, Denis M, Marcil M, Krimbou L, Genest J Jr. (2004) Apolipoprotein A-I activates cellular cAMP signaling through the ABCA1 transporter. J. Biol. Chem. 279:9963–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Haidar B, Denis M, Krimbou L, Marcil M, Genest J Jr. (2002) cAMP induces ABCA1 phosphorylation activity and promotes cholesterol efflux from fibroblasts. J. Lipid Res. 43:2087–94.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    See RH, et al. (2002) Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J. Biol. Chem. 277:41835–42.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yang J, et al. (2007) Effect of apolipoproteinA-I on expression and function of ATP-binding cassette transporter A1 through PKA signaling. Prog. Biochem. Biophys. 34:611–9.Google Scholar
  53. 53.
    Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S. (2003) Apolipoprotein A-I activates protein kinase C alpha signaling to phosphorylate and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. J. Biol. Chem. 278:47890–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Delvecchio CJ, Capone JP. (2008) Protein kinase C alpha modulates liver X receptor alpha transactivation. J. Endocrinol. 197:121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tang C, Vaughan AM, Oram JF. (2004) Janus kinase 2 modulates the apolipoprotein interactions with ABCA1 required for removing cellular cholesterol. J. Biol. Chem. 279:7622–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Tang C, Vaughan AM, Anantharamaiah GM, Oram JF. (2006) Janus kinase 2 modulates the lipid-removing but not protein-stabilizing interactions of amphipathic helices with ABCA1. J. Lipid Res. 47:107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. (2009) The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J. Biol. Chem. 284:32336–43.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nofer JR, et al. (2006) Apolipoprotein A-I activates Cdc42 signaling through the ABCA1 transporter. J. Lipid Res. 47:794–803.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nofer JR, et al. (2003) Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux. J. Biol. Chem. 278:53055–62.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tsukamoto K, et al. (2002) Retarded intracellular lipid transport associated with reduced expression of Cdc42, a member of Rho-GTPases, in human aged skin fibroblasts: a possible function of Cdc42 in mediating intracellular lipid transport. Arterioscler. Thromb. Vasc. Biol. 22:1899–904.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Iwamoto N, Lu R, Tanaka N, Abe-Dohmae S, Yokoyama S. (2010) Calmodulin interacts with ATP binding cassette transporter A1 to protect from calpain-mediated degradation and upregulates high-density lipoprotein generation. Arterioscler. Thromb. Vasc. Biol. 30:1446–52.CrossRefGoogle Scholar
  62. 62.
    Karwatsky J, Ma L, Dong F, Zha X. (2010) Cholesterol efflux to apoA-I in ABCA1-expressing cells is regulated by Ca2+-dependent calcineurin signaling. J. Lipid Res. 51:1144–56.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jeon KI, et al. (2010) Ca2+/calmodulin-stimulated PDE1 regulates the beta-catenin/TCF signaling through PP2A B56 gamma subunit in proliferating vascular smooth muscle cells. FEBS J. 277:5026–39.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hu YW, et al. (2009) Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis. 204:e35–43.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ma L, et al. (2011) Ht31, a protein kinase A anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1. J. Biol. Chem. 286:3370–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Yamauchi Y, et al. (2004) Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. J. Lipid Res. 45:1943–51.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Thymiakou E, Zannis VI, Kardassis D. (2007) Physical and functional interactions between liver X receptor/retinoid X receptor and Sp1 modulate the transcriptional induction of the human ATP binding cassette transporter A1 gene by oxysterols and retinoids. Biochemistry. 46:11473–83.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Chen X, et al. (2011) Transcriptional regulation of ATP-binding cassette transporter A1 expression by a novel signaling pathway. J. Biol. Chem. 286:8917–23.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Williams LM, et al. (2007) Expression of constitutively active STAT3 can replicate the cytokine-suppressive activity of interleukin-10 in human primary macrophages. J. Biol. Chem. 282:6965–75.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Murray PJ. (2006) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr. Opin. Pharmacol. 6:379–86.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hao XR, et al. (2009) IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis. 203:417–28.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wool GD, et al. (2011)4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. Faseb J. 25:290–300.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yin K, et al. (2011) Tristetraprolin-dependent posttranscriptional regulation of inflammatory cytokines mRNA expression by apolipoprotein A-I: role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3. J. Biol. Chem. 286:13834–45.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Matsunaga T, et al. (1991) Apolipoprotein A-I deficiency due to a codon 84 nonsense mutation of the apolipoprotein A-I gene. Proc. Natl. Acad. Sci. U. S. A. 88:2793–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Takai Y, Sasaki T, Matozaki T. (2001) Small GTP-binding proteins. Physiol. Rev. 81:153–208.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hirano K, et al. (2000) Decreased expression of a member of the Rho GTPase family, Cdc42Hs, in cells from Tangier disease — the small G protein may play a role in cholesterol efflux. FEBS Lett. 484:275–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tsukamoto K, et al. (2001) ATP-binding cassette transporter-1 induces rearrangement of actin cytoskeletons possibly through Cdc42/N-WASP. Biochem. Biophys. Res. Commun. 287:757–65.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Utech M, et al. (2001) Accumulation of RhoA, RhoB, RhoG, and Rac1 in fibroblasts from Tangier disease subjects suggests a regulatory role of Rho family proteins in cholesterol efflux. Biochem. Biophys. Res. Commun. 280:229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Li J, et al. (2010) Exendin-4 regulates pancreatic ABCA1 transcription via CaMKK/CaMKIV pathway. J. Cell Mol. Med. 14:1083–7.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Mulay V, Wood P, Rentero C, Enrich C, Grewal T. (2011) Signal transduction pathways provide opportunities to enhance HDL and apoAI-dependent reverse cholesterol transport. Curr. Pharm. Biotechnol. 2011, Apr 6 [Epub ahead of print].Google Scholar
  81. 81.
    Nakaya K, et al. (2010) Cilostazol enhances macrophage reverse cholesterol transport in vitro and in vivo. Atherosclerosis. 213:135–41.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Tall AR. (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J. Intern. Med. 263:256–73.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Nagao K, et al. (2007) Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells. J. Biol. Chem. 282:14868–74.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rosenberg MF, Callaghan R, Ford RC, Higgins CF. (1997) Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J. Biol. Chem. 272:10685–94.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ward A, Reyes CL, Yu J, Roth CB, Chang G. (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. U. S. A. 104:19005–10.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Dawson RJ, Locher KP. (2006) Structure of a bacterial multidrug ABC transporter. Nature. 443:180–5.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Vedhachalam C, et al. (2004) Influence of ApoA-I structure on the ABCA1-mediated efflux of cellular lipids. J. Biol. Chem. 279:49931–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lapicka-Bodzioch K, et al. (2001) Homogeneous assay based on 52 primer sets to scan for mutations of the ABCA1 gene and its application in genetic analysis of a new patient with familial high-density lipoprotein deficiency syndrome. Biochim. Biophys. Acta. 1537:42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Vaughan AM, Oram JF. (2003) ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. J. Lipid Res. 44:1373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lin G, Oram JF. (2000) Apolipoprotein binding to protruding membrane domains during removal of excess cellular cholesterol. Atherosclerosis. 149:359–70.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Vedhachalam C, et al. (2007) Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J. Biol. Chem. 282:25123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Vedhachalam C, et al. (2010) Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein HDL) particle size distribution. J. Biol. Chem. 285:31965–73.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Santamarina-Fojo S, Remaley AT, Neufeld EB, Brewer HB Jr. (2001) Regulation and intracellular trafficking of the ABCA1 transporter. J. Lipid Res. 42:1339–45.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Forte TM, Bielicki JK, Knoff L, McCall MR. (1996) Structural relationships between nascent apoA-I-containing particles that are extracellularly assembled in cell culture. J. Lipid Res. 37:1076–85.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Bielicki JK, McCall MR, Forte TM. (1999) Apolipoprotein A-I promotes cholesterol release and apolipoprotein E recruitment from THP-1 macrophage-like foam cells. J. Lipid Res. 40:85–92.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Liu L, et al. (2003) Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol: formation of nascent high density lipoprotein particles. J. Biol. Chem. 278:42976–84.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ. (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 39:14113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sun Y, et al. (2003) Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J Biol. Chem. 278:5813–20.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tsai JY, et al. (2010) EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc. Res. 88:415–23.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Arakawa R, et al. (2009) Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antiatherogenesis. J. Lipid Res. 50:2299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wu CA, Tsujita M, Hayashi M, Yokoyama S. (2004) Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J. Biol. Chem. 279:30168–74.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Le Goff W, et al. (2004) Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 24:2155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Feng B, Tabas I. (2002) ABCA1-mediated cholesterol efflux is defective in free cholesterolloaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J. Biol. Chem. 277:43271–80.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Passarelli M, et al. (2005) Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 54:2198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fitzgerald ML, et al. (2002) Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J. Biol. Chem. 277:33178–87.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tanaka AR, et al. (2003) Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. J. Biol. Chem. 278:8815–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Clee SM, et al. (2000) Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J. Clin. Invest. 106:1263–70.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Fitzgerald ML, et al. (2004) ATP-binding cassette transporter A1 contains a novel C-terminal VFVNFA motif that is required for its cholesterol efflux and ApoA-I binding activities. J. Biol. Chem. 279:48477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Chroni A, et al. (2003) The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220–231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. J. Biol. Chem. 278:6719–30.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Panagotopulos SE, et al. (2002) The role of apolipoprotein A-I helix 10 in apolipoprotein-mediated cholesterol efflux via the ATP-binding cassette transporter ABCA1. J. Biol. Chem. 277:39477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Chiesa G, et al. (2002) Recombinant apolipoprotein A-I(Milano) infusion into rabbit carotid artery rapidly removes lipid from fatty streaks. Circ. Res. 90:974–80.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Shah PK, et al. (2001) High-dose recombinant apolipoprotein A-I(Milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice. Potential implications for acute plaque stabilization. Circulation. 103:3047–50.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Nissen SE, et al. (2003) Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 290:2292–300.CrossRefGoogle Scholar
  114. 114.
    Alexander ET, et al. (2009) Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler. Thromb. Vasc. Biol. 29:1496–501.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Guo-Jun Zhao
    • 1
  • Kai Yin
    • 1
  • Yu-chang Fu
    • 2
  • Chao-Ke Tang
    • 1
  1. 1.Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research CenterUniversity of South ChinaHengyang, HunanChina
  2. 2.Department of Nutrition SciencesUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations