Advertisement

Molecular Medicine

, Volume 18, Issue 1, pp 83–94 | Cite as

In Vivo Topoisomerase I Inhibition Attenuates the Expression of Hypoxia-Inducible Factor 1α Target Genes and Decreases Tumor Angiogenesis

  • Eric Guérin
  • Wolfgang Raffelsberger
  • Erwan Pencreach
  • Armin Maier
  • Agnès Neuville
  • Anne Schneider
  • Philippe Bachellier
  • Serge Rohr
  • Amélie Petitprez
  • Olivier Poch
  • Dino Moras
  • Pierre Oudet
  • Annette K. Larsen
  • Marie-Pierre Gaub
  • Dominique Guenot
Research Article

Abstract

Topoisomerase I is a privileged target for widely used anticancer agents such as irinotecan. Although these drugs are classically considered to be DNA-damaging agents, increasing evidence suggests that they might also influence the tumor environment. This study evaluates in vivo cellular and molecular modifications induced by irinotecan, a topoisomerase I-directed agent, in patient-derived colon tumors subcutaneously implanted in athymic nude mice. Irinotecan was given intraperitoneally at 40 mg/kg five times every 5 d, and expression profiles were evaluated at d 25 in tumors from treated and untreated animals. Unexpectedly, the in vivo antitumor activity of irinotecan was closely linked to a downregulation of hypoxia-inducible factor-1α (HIF1A) target genes along with an inhibition of HIF1A protein accumulation. The consequence was a decrease in tumor angiogenesis leading to tumor size stabilization. These results highlight the molecular basis for the antitumor activity of a widely used anticancer agent, and the method used opens the way for mechanistic studies of the in vivo activity of other anticancer therapies.

Notes

Acknowledgments

The authors wish to acknowledge the biocomputing, bioinformatics and microarray facilities at the Institut de Génétique et de Biologie Moléculaire et Cellulaire. They also gratefully acknowledge Christiane Arnold, Mathilde Arrivé, Nathalie Hamelin and Laetitia Ruck for excellent technical assistance.

This work was supported by the Ligue Régionale contre le Cancer (Haut-Rhin, Bas-Rhin), the Institut National du Cancer (CETIRICOL, PL06.008), the Institut National de la Santé et de la Recherche Médicale, the Centre National de la Recherche Scientifique, the Université de Strasbourg and the Hôpitaux Universitaires de Strasbourg.

References

  1. 1.
    Guenot D, et al. (2006) Primary tumour genetic alterations and intra-tumoral heterogeneity are maintained in xenografts of human colon cancers showing chromosome instability. J. Pathol. 208:643–52.CrossRefGoogle Scholar
  2. 2.
    Saltz LB, et al. (2000) Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer: Irinotecan study group. N. Engl. J. Med. 343:905–14.CrossRefGoogle Scholar
  3. 3.
    Douillard JY, et al. (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 355:1041–7.CrossRefGoogle Scholar
  4. 4.
    Cunningham D, et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351:337–45.CrossRefGoogle Scholar
  5. 5.
    Hurwitz H, et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350:2335–42.CrossRefGoogle Scholar
  6. 6.
    Van Cutsem E, et al. (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360:1408–17.CrossRefGoogle Scholar
  7. 7.
    Champoux JJ. (2001) DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70:369–413.CrossRefGoogle Scholar
  8. 8.
    Liu LF, et al. (2000) Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 922:1–10.CrossRefGoogle Scholar
  9. 9.
    Bhonde MR, et al. (2006) Equivalent effect of DNA damage-induced apoptotic cell death or long-term cell cycle arrest on colon carcinoma cell proliferation and tumour growth. Oncogene. 25:165–75.CrossRefGoogle Scholar
  10. 10.
    Pommier Y. (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer. 6:789–802.CrossRefGoogle Scholar
  11. 11.
    Naef F, Huelsken J. (2005) Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucleic Acids Res. 33:e111.CrossRefGoogle Scholar
  12. 12.
    Fiebig HH, Maier A, Burger AM. (2004) Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur. J. Cancer. 40:802–20.CrossRefGoogle Scholar
  13. 13.
    Raffelsberger W, et al. (2008) RReportGenerator: automatic reports from routine statistical analysis using R. Bioinformatics. 24:276–8.CrossRefGoogle Scholar
  14. 14.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–93.CrossRefGoogle Scholar
  15. 15.
    Irizarry RA, et al. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31:e15.CrossRefGoogle Scholar
  16. 16.
    Gentleman RC, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80.CrossRefGoogle Scholar
  17. 17.
    Reiner A, Yekutieli D, Benjamini Y. (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 19:368–75.CrossRefGoogle Scholar
  18. 18.
    Strimmer K. (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics. 24:1461–2.CrossRefGoogle Scholar
  19. 19.
    Dennis G, et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4:P3.CrossRefGoogle Scholar
  20. 20.
    Suzuki R, Shimodaira H. (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 22:1540–2.CrossRefGoogle Scholar
  21. 21.
    Pencreach E, et al. (2009) Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1alpha axis. Clin. Cancer Res. 15:1297–307.CrossRefGoogle Scholar
  22. 22.
    Prewett MC, et al. (2002) Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin. Cancer Res. 8:994–1003.PubMedGoogle Scholar
  23. 23.
    Denko NC, et al. (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene. 22:5907–14.CrossRefGoogle Scholar
  24. 24.
    Semenza GL. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3:721–32.CrossRefGoogle Scholar
  25. 25.
    Semenza GL. (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 29:625–34.CrossRefGoogle Scholar
  26. 26.
    Pouysségur J, Dayan F, Mazure NM. (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441:437–43.CrossRefGoogle Scholar
  27. 27.
    Gordan JD, Simon MC. (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr. Opin. Genet. Dev. 17:71–7.CrossRefGoogle Scholar
  28. 28.
    Rankin EB, Giaccia AJ. (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15:678–85.CrossRefGoogle Scholar
  29. 29.
    Zhong H, et al. (1999) Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res. 59:5830–5.PubMedGoogle Scholar
  30. 30.
    Su AI, et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. U. S. A. 101:6062–7.CrossRefGoogle Scholar
  31. 31.
    Simiantonaki N, Taxeidis M, Jayasinghe C, Kurzik-Dumke U, Kirkpatrick CJ. (2008) Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression. BMC Cancer. 8:320.CrossRefGoogle Scholar
  32. 32.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20.CrossRefGoogle Scholar
  33. 33.
    Semenza GL. (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin. Cancer Biol. 19:12–6.CrossRefGoogle Scholar
  34. 34.
    May D, et al. (2005) Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer. Oncogene. 24:1011–20.CrossRefGoogle Scholar
  35. 35.
    Nikitenko LL, Fox SB, Kehoe S, Rees MC, Bicknell R. (2006) Adrenomedullin and tumour angiogenesis. Br. J. Cancer. 94:1–7.CrossRefGoogle Scholar
  36. 36.
    Schreiber V, Dantzer F, Ame JC, de Murcia G. (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell. Biol. 7:517–28.CrossRefGoogle Scholar
  37. 37.
    Kleine H, et al. (2008) Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell. 32:57–69.CrossRefGoogle Scholar
  38. 38.
    Zhou Y, et al. (2002) Transcriptional regulation of mitotic genes by camptothecin-induced DNA damage: microarray analysis of dose- and time-dependent effects. Cancer Res. 62:1688–95.PubMedGoogle Scholar
  39. 39.
    Daoud SS, et al. (2003) Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Res. 63:2782–93.PubMedGoogle Scholar
  40. 40.
    Minderman H, et al. (2005) In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol. Cancer Ther. 4:885–900.CrossRefGoogle Scholar
  41. 41.
    Souza V, Dong YB, Zhou HS, Zacharias W, McMasters KM. (2005) SW-620 cells treated with topoisomerase I inhibitor SN-38: gene expression profiling. J. Transl. Med. 3:44.CrossRefGoogle Scholar
  42. 42.
    Bhonde MR, et al. (2006). DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J. Biol. Chem. 281:8675–85.CrossRefGoogle Scholar
  43. 43.
    Guo X, et al. (2006) Analysis of common gene expression patterns in four human tumor cell lines exposed to camptothecin using cDNA microarray: identification of topoisomerase-mediated DNA damage response pathways. Front. Biosci. 11:1924–31.CrossRefGoogle Scholar
  44. 44.
    Nakashio A, Fujita N, Tsuruo T. (2002) Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway. Int. J. Cancer. 98:36–41.CrossRefGoogle Scholar
  45. 45.
    Petrangolini G, et al. (2003) Antiangiogenic effects of the novel camptothecin ST1481 (gimatecan) in human tumor xenografts. Mol. Cancer Res. 1:863–70.PubMedGoogle Scholar
  46. 46.
    Kamiyama H, Takano S, Tsuboi K, Matsumura A. (2005) Anti-angiogenic effects of SN38 (active metabolite of irinotecan): inhibition of hypoxia-inducible factor 1 alpha (HIF-1alpha)/vascular endothelial growth factor (VEGF) expression of glioma and growth of endothelial cells. J. Cancer Res. Clin. Oncol. 131:205–13.CrossRefGoogle Scholar
  47. 47.
    Ji Y, et al. (2007) The camptothecin derivative CPT-11 inhibits angiogenesis in a dual-color imageable orthotopic metastatic nude mouse model of human colon cancer. Anticancer Res. 27:713–8.PubMedGoogle Scholar
  48. 48.
    Bocci G, et al. (2008) Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br. J. Cancer. 98:1619–29.CrossRefGoogle Scholar
  49. 49.
    Takano S, et al. (2010) Metronomic treatment of malignant glioma xenografts with irinotecan (CPT-11) inhibits angiogenesis and tumor growth. J. Neurooncol. 99:177–85.CrossRefGoogle Scholar
  50. 50.
    Pastorino F, et al. (2010) Tumor regression and curability of preclinical neuroblastoma models by PEGylated SN38 (EZN-2208), a novel topoisomerase I inhibitor. Clin. Cancer Res. 16:4809–21.CrossRefGoogle Scholar
  51. 51.
    Sapra P, et al. (2011) Potent and sustained inhibition of HIF-1α and downstream genes by a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects. Angiogenesis. 14:245–53.CrossRefGoogle Scholar
  52. 52.
    Rapisarda A, et al. (2002) Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62:4316–24.PubMedGoogle Scholar
  53. 53.
    Rapisarda A, et al. (2004) Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 64:6845–8.CrossRefGoogle Scholar
  54. 54.
    Rapisarda A, et al. (2004) Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 64:1475–82.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Eric Guérin
    • 1
    • 2
  • Wolfgang Raffelsberger
    • 3
  • Erwan Pencreach
    • 1
    • 2
  • Armin Maier
    • 4
  • Agnès Neuville
    • 5
  • Anne Schneider
    • 1
    • 2
  • Philippe Bachellier
    • 6
  • Serge Rohr
    • 7
  • Amélie Petitprez
    • 8
    • 9
    • 10
  • Olivier Poch
    • 3
  • Dino Moras
    • 3
  • Pierre Oudet
    • 2
  • Annette K. Larsen
    • 8
    • 9
    • 10
  • Marie-Pierre Gaub
    • 1
    • 2
  • Dominique Guenot
    • 1
  1. 1.EA 4438 Physiopathologie et Médecine TranslationnelleUniversité de Strasbourg (UdS)Strasbourg CedexFrance
  2. 2.Laboratoire de Biochimie et Biologie MoléculaireHôpitaux Universitaires de Strasbourg, Hôpital de HautepierreStrasbourgFrance
  3. 3.Département de Bioinformatique Intégrative et GénomiqueInstitut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
  4. 4.OncotestFreiburgGermany
  5. 5.Département de PathologieHôpitaux Universitaires de Strasbourg, Hôpital de HautepierreStrasbourgFrance
  6. 6.Service de Chirurgie Générale, Hépatique et EndocrinienneHôpitaux Universitaires de Strasbourg, Hôpital de HautepierreStrasbourgFrance
  7. 7.Service de Chirurgie Générale et DigestiveHôpitaux Universitaires de Strasbourg, Hôpital de HautepierreStrasbourgFrance
  8. 8.Laboratory of Cancer Biology and TherapeuticsCentre de Recherche Saint-AntoineParisFrance
  9. 9.Institut National de la Santé et de la Recherche Médicale U938ParisFrance
  10. 10.Université Pierre et Marie Curie (Université Paris 6)ParisFrance

Personalised recommendations