Molecular Medicine

, Volume 17, Issue 9–10, pp 949–964 | Cite as

Frequent Gene Products and Molecular Pathways Altered in Prostate Cancer- and Metastasis-Initiating Cells and Their Progenies and Novel Promising Multitargeted Therapies

  • Murielle Mimeault
  • Surinder K. Batra
Review Article


Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients.



This work was supported in part by the U.S. Department of Defense (PC074289) and the National Institutes of Health (R01CA138791) for prostate cancer research.


  1. 1.
    Winquist E, et al. (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer. 6:112.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tannock IF, et al. (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351:1502–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Petrylak DP, et al. (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351:1513–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Jemal A, et al. (2009) Cancer statistics, 2009. CA Cancer J. Clin. 59:225–49.CrossRefPubMedGoogle Scholar
  5. 5.
    Mimeault M, Batra SK. (2006) Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis. 27:1–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Haas GP, Delongchamps N, Brawley OW, Wang CY, de la Roza G. (2008) The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can. J. Urol. 15:3866–71.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Freedland SJ. (2011) Screening, risk assessment, and the approach to therapy in patients with prostate cancer. Cancer. 117:1123–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Ye XC, Choueiri M, Tu SM, Lin SH. (2007) Biology and clinical management of prostate cancer bone metastasis. Front. Biosci. 12:3273–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Yuan X, Balk SP. (2009) Mechanisms mediating androgen receptor reactivation after castration. Urol. Oncol. 27:36–41.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Feldman BJ, Feldman D. (2001) The development of androgen-independent prostate cancer. Nat. Rev. Cancer. 1:34–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Karlou M, Tzelepi V, Efstathiou E. (2010) Therapeutic targeting of the prostate cancer microenvironment. Nat. Rev. Urol. 7:494–509.CrossRefPubMedGoogle Scholar
  12. 12.
    Di Lorenzo G, De Placido S. (2006) Hormone refractory prostate cancer (HRPC): present and future approaches of therapy. Int. J. Immunopathol. Pharmacol. 19:11–34.PubMedGoogle Scholar
  13. 13.
    Mimeault M, Mehta PP, Hauke R, Batra SK. (2008) Functions of normal and malignant pro-static stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Endocr. Rev. 29:234–52.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mimeault M, et al. (2006) Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int. J. Cancer. 118:1022–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Mimeault M, et al. (2007) Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Mol. Cancer Ther. 6:967–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Mimeault M, et al. (2007) Novel combination therapy against metastatic and androgen-independent prostate cancer by using gefitinib, tamoxifen and etoposide. Int. J. Cancer. 120:160–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Lorenzo G, et al. (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res. 8:3438–44.PubMedGoogle Scholar
  18. 18.
    Schafer W, et al. (2006) Intensity of androgen and epidermal growth factor receptor immunoreactivity in samples of radical prostatectomy as prognostic indicator: correlation with clinical data of long-term observations. J. Urol. 176:532–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Le Page C, Koumakpayi IH, Lessard L, Mes-Masson AM, Saad F. (2005) EGFR and Her-2 regulate the constitutive activation of NF-kappaB in PC-3 prostate cancer cells. Prostate. 65:130–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Hammarsten P, et al. (2010) Low levels of phosphorylated epidermal growth factor receptor in nonmalignant and malignant prostate tissue predict favorable outcome in prostate cancer patients. Clin. Cancer Res. 16:1245–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Sheng T, et al. (2004) Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer. 3:29.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Karhadkar SS, et al. (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 431:707–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Taichman RS, et al. (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62:1832–7.PubMedGoogle Scholar
  24. 24.
    Ayala G, et al. (2004) High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin. Cancer Res. 10:6572–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Shukla S, et al. (2007) Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int. J. Cancer. 121:1424–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Ross JS, et al. (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin. Cancer Res. 10:2466–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Sweeney C, et al. (2004) Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin. Cancer Res. 10:5501–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Koumakpayi IH, Le Page C, Mes-Masson AM, Saad F. (2010) Hierarchical clustering of immunohistochemical analysis of the activated ErbB/PI3K/Akt/NF-kappaB signalling pathway and prognostic significance in prostate cancer. Br. J. Cancer. 102:1163–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chae KS, et al. (2011) Opposite functions of HIF-alpha isoforms in VEGF induction by TGF-beta1 under non-hypoxic conditions. Oncogene. 30:1213–28.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang J, Cai Y, Ren C, Ittmann M. (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66:8347–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Tomlins SA, et al. (2005) Recurrent fusion of TM-PRSS2 and ETS transcription factor genes in prostate cancer. Science. 310:644–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Tomlins SA, et al. (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66:3396–400.CrossRefPubMedGoogle Scholar
  33. 33.
    Perner S, et al. (2007) TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol. 31:882–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. (2008) Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer. 8:497–511.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    King JC, et al. (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41:524–6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yoshimoto M, et al. (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol. 21:1451–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Liu S, et al. (2011) Detection of ERG gene rearrangements and PTEN deletions in unsuspected prostate cancer of the transition zone. Cancer Biol. Ther. 11:562–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Bismar TA, et al. (2011) PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer. BJU Int. 107:477–85.CrossRefPubMedGoogle Scholar
  39. 39.
    Demichelis F, et al. (2007) TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 26:4596–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Leong M, et al. (2009) Overexpression of truncated ERG from TMPRSS2-ERG fusion and prostate cancer development. Pathol. Lab. Med. Int. 1:13–21.Google Scholar
  41. 41.
    Carver BS, et al. (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41:619–24.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Swanson TA, et al. (2011) TMPRSS2/ERG fusion gene expression alters chemo- and radio-responsiveness in cell culture models of androgen independent prostate cancer. Prostate. 2011 March 10 [Epub ahead of print]Google Scholar
  43. 43.
    Datta MW, et al. (2006) Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol. Cancer. 5:9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ao M, et al. (2007) Cross-talk between paracrineacting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 67:4244–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Chung LW, Baseman A, Assikis V, Zhau HE. (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J. Urol. 173:10–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Giannoni E, et al. (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 70:6945–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Giannoni E, Bianchini F, Calorini L, Chiarugi P. (2011) Cancer associated fibroblasts exploit reactive oxygen species through a pro-inflammatory signature leading to EMT and stemness. Antioxid. Redox. Signal. 14:2361–71.CrossRefPubMedGoogle Scholar
  48. 48.
    Brown MD, et al. (2007) Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate. 67:1384–96.CrossRefPubMedGoogle Scholar
  49. 49.
    Maitland NJ, Bryce SD, Stower MJ, Collins AT. (2006) Prostate cancer stem cells: a target for new therapies. Ernst Schering Found. Symp. Proc. 5:155–79.Google Scholar
  50. 50.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Miki J, et al. (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 67:3153–61.CrossRefPubMedGoogle Scholar
  52. 52.
    Rowehl RA, Crawford H, Dufour A, Ju J, Botchkina GI. (2008) Genomic analysis of prostate cancer stem cells isolated from a highly metastatic cell line. Cancer Genomics Proteomics. 5:301–10.PubMedGoogle Scholar
  53. 53.
    Guzman-Ramirez N, et al. (2009) In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate. 69:1683–93.CrossRefPubMedGoogle Scholar
  54. 54.
    Xin L, Lawson DA, Witte ON. (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 102:6942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen BY, et al. (2007) Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis. Biochem. Biophys. Res. Commun. 357:1084–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Wei C, Guomin W, Yujun L, Ruizhe Q. (2007) Cancer stem-like cells in human prostate carcinoma cells DU145: the seeds of the cell line? Cancer Biol. Ther. 6:763–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 25:1696–708.CrossRefPubMedGoogle Scholar
  58. 58.
    Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+α2β1+ cell population is enriched in tumor-initiating cells. Cancer Res. 67:6796–805.CrossRefPubMedGoogle Scholar
  59. 59.
    Patrawala L, et al. (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 65:6207–19.CrossRefPubMedGoogle Scholar
  60. 60.
    Tang DG, et al. (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol. Carcinog. 46:1–14.CrossRefPubMedGoogle Scholar
  61. 61.
    Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. (2010) Identification of a cell of origin for human prostate cancer. Science. 329:568–71.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lawson DA, et al. (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl. Acad. Sci. U. S. A. 107:2610–5.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mimeault M, Batra SK. (2011) Animal models of prostate carcinogenesis underlining the critical implication of prostatic stem progenitor cells. Biochim. Biophys. Acta. 1816:25–37.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Li T, et al. (2009) ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab. Invest. 30:234–44.Google Scholar
  65. 65.
    van den Hoogen C, et al. (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 70:5163–73.CrossRefPubMedGoogle Scholar
  66. 66.
    Gu G, Yuan J, Wills M, Kasper S. (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. 67:4807–15.CrossRefPubMedGoogle Scholar
  67. 67.
    Liu T, et al. (2010) Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Mol. Cell. Biochem. 340:265–73.CrossRefPubMedGoogle Scholar
  68. 68.
    Fan X, Liu S, Su F, Pan Q, Lin T. (2010) Effective enrichment of prostate cancer stem cells from spheres in a suspension culture system. Urol. Oncol. 2010, Sep 13. [Epub ahead of print].Google Scholar
  69. 69.
    Mimeault M, Johansson SL, Henichart JP, Depreux P, Batra SK. (2010) Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and non-side population cell fractions from human invasive prostate cancer cells. Mol. Cancer Ther. 9:617–30.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chauchereau A, et al. (2011) Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer. Exp. Cell. Res. 317:262–75.CrossRefPubMedGoogle Scholar
  71. 71.
    Duhagon MA, Hurt EM, Sotelo-Silveira JR, Zhang X, Farrar WL. (2010) Genomic profiling of tumor initiating prostatospheres. BMC Genomics. 11:324.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Klarmann GJ, et al. (2009) Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin. Exp. Metastasis. 26:433–46.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kong D, et al. (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 5:e12445.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bae KM, et al. (2010) Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J. Urol. 183:2045–53.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Acharya A, Das I, Chandhok D, Saha T. (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 3:23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Birnie R, et al. (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9:R83.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Mathews LA, Hurt EM, Zhang X, Farrar WL. (2010) Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells. Mol. Cancer. 9:267.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kasper S, Cookson MS. (2006) Mechanisms leading to the development of hormone-resistant prostate cancer. Urol. Clin. North Am. 33:201–10.CrossRefPubMedGoogle Scholar
  79. 79.
    De Marzo AM, et al. (2004) Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J. Cell. Biochem. 91:459–77.CrossRefPubMedGoogle Scholar
  80. 80.
    De Marzo AM, et al. (2007) Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7:256–69.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zenzmaier C, Untergasser G, Berger P. (2008) Aging of the prostate epithelial stem/progenitor cell. Exp. Gerontol. 43:981–5.CrossRefPubMedGoogle Scholar
  82. 82.
    Mimeault M, Batra SK. (2009) Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res. Rev. 8:94–112.CrossRefPubMedGoogle Scholar
  83. 83.
    Ellem SJ, Wang H, Poutanen M, Risbridger GP. (2009) Increased endogenous estrogen synthesis leads to the sequential induction of prostatic inflammation (prostatitis) and prostatic premalignancy. Am. J. Pathol. 175:1187–99.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Evans GS, Chandler JA. (1987) Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate. 11:339–51.CrossRefPubMedGoogle Scholar
  85. 85.
    Robinson EJ, Neal DE, Collins AT. (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate. 37:149–60.CrossRefPubMedGoogle Scholar
  86. 86.
    Hudson DL, O’Hare M, Watt FM, Masters JR. (2000) Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab. Invest. 80:1243–50.CrossRefPubMedGoogle Scholar
  87. 87.
    Wang Y, Hayward S, Cao M, Thayer K, Cunha G. (2001) Cell differentiation lineage in the prostate. Differentiation. 68:270–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Collins AT, Habib FK, Maitland NJ, Neal DE. (2001) Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J. Cell. Sci. 114:3865–72.PubMedGoogle Scholar
  89. 89.
    Tokar EJ, Ancrile BB, Cunha GR, Webber MM. (2005) Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation. 73:463–73.CrossRefPubMedGoogle Scholar
  90. 90.
    Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, et al. (2004) CD133, a novel marker for human prostatic epithelial stem cells. J. Cell. Sci. 117:3539–45.CrossRefPubMedGoogle Scholar
  91. 91.
    Burger PE, et al. (2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl. Acad. Sci. U. S. A. 102:7180–5.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Heer R, Robson CN, Shenton BK, Leung HY. (2007) The role of androgen in determining differentiation and regulation of androgen receptor expression in the human prostatic epithelium transient amplifying population. J. Cell. Physiol. 212:572–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Burger PE, et al. (2009) High ALDH activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells. 27:2220–8.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Tsujimura A, et al. (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J. Cell. Biol. 157:1257–65.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. (2007) Isolation and functional characterization of murine prostate stem cells. Proc. Natl. Acad. Sci. U. S. A. 104:181–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Leong KG, Wang BE, Johnson L, Gao WQ. (2008) Generation of a prostate from a single adult stem cell. Nature. 456:804–8.CrossRefPubMedGoogle Scholar
  97. 97.
    Wang S, et al. (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc. Natl. Acad. Sci. U. S. A. 103:1480–5.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Mulholland DJ, et al. (2009) Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res. 69:8555–62.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Zhou Z, et al. (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66:7889–98.CrossRefPubMedGoogle Scholar
  100. 100.
    Wang X, et al. (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Man YG, Gardner WA. (2007) Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion. Med. Hypotheses. 70:387–408.CrossRefPubMedGoogle Scholar
  102. 102.
    Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG. (2008) PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res. 68:1820–1825.CrossRefPubMedGoogle Scholar
  103. 103.
    Hayward SW, et al. (2001) Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res. 61:8135–42.PubMedGoogle Scholar
  104. 104.
    van Leenders GJ, Aalders TW, Hulsbergen-van de Kaa CA, Ruiter DJ, Schalken JA. (2001) Expression of basal cell keratins in human prostate cancer metastases and cell lines. J. Pathol. 195:563–70.CrossRefPubMedGoogle Scholar
  105. 105.
    van Leenders GJ, et al. (2003) Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am. J. Pathol. 162:1529–37.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Yang XJ, Lecksell K, Gaudin P, Epstein JI. (1999) Rare expression of high-molecular-weight cytokeratin in adenocarcinoma of the prostate gland: a study of 100 cases of metastatic and locally advanced prostate cancer. Am. J. Surg. Pathol. 23:147–52.CrossRefPubMedGoogle Scholar
  107. 107.
    Dubrovska A, et al. (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl. Acad. Sci. U. S. A. 106:268–73.CrossRefPubMedGoogle Scholar
  108. 108.
    Bisson I, Prowse DM. (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19:683–97.CrossRefPubMedGoogle Scholar
  109. 109.
    Wang S, et al. (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 4:209–21.CrossRefPubMedGoogle Scholar
  110. 110.
    Kim MJ, et al. (2002) Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62:2999–3004.PubMedGoogle Scholar
  111. 111.
    Kim MJ, et al. (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 99:2884–9.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Song H, et al. (2009) Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene. 28:3307–19.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Gao H, et al. (2004) A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 101:17204–9.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat. Genet. 27:222–4.CrossRefPubMedGoogle Scholar
  115. 115.
    Abate-Shen C, et al. (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 63:3886–90.PubMedGoogle Scholar
  116. 116.
    Couto SS, et al. (2009) Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Differentiation. 77:103–11.CrossRefPubMedGoogle Scholar
  117. 117.
    Chen Z, et al. (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–30.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Elgavish A, et al. (2004) Transgenic mouse with human mutant p53 expression in the prostate epithelium. Prostate 61:26–34.CrossRefPubMedGoogle Scholar
  119. 119.
    Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. (2010) Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten(−/−)TP53(−/−) prostate cancer model. Stem Cells. 28:2129–40.CrossRefPubMedGoogle Scholar
  120. 120.
    Shah RB, Ghosh D, Elder JT. (2006) Epidermal growth factor receptor (ErbB1) expression in prostate cancer progression: correlation with androgen independence. Prostate 66:1437–44.CrossRefPubMedGoogle Scholar
  121. 121.
    Misra S, Toole BP, Ghatak S. (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J. Biol. Chem. 281:34936–41.CrossRefPubMedGoogle Scholar
  122. 122.
    Zhang S, et al. (2008) Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J. Exp. Clin. Cancer Res. 27:62.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Katoh M, Katoh M. (2010) Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int. J. Oncol. 36:415–20.PubMedGoogle Scholar
  124. 124.
    Mimeault M, Batra SK. (2010) Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol. Rev. 62:497–524.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Skvortsova I, et al. (2008) Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics. 8:4521–33.CrossRefPubMedGoogle Scholar
  126. 126.
    Goel HL, Underwood JM, Nickerson JA, Hsieh CC, Languino LR. (2010) Beta1 integrins mediate cell proliferation in three-dimensional cultures by regulating expression of the sonic hedgehog effector protein, GLI1. J. Cell. Physiol. 224:210–7.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Narita S, et al. (2008) GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Clin. Cancer Res. 14:5769–77.CrossRefPubMedGoogle Scholar
  128. 128.
    Mimeault M, Batra SK. (2007) Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev. 26:203–14.CrossRefPubMedGoogle Scholar
  129. 129.
    Dubrovska A, et al. (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl. Acad. Sci. U. S. A. 106:268–73.CrossRefPubMedGoogle Scholar
  130. 130.
    Penet MF, et al. (2009) Noninvasive multiparametric imaging of metastasis-permissive microenvironments in a human prostate cancer xenograft. Cancer Res. 69:8822–9.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Chen N, et al. (2009) BCL-xL is a target gene regulated by hypoxia-inducible factor-1α. J. Biol. Chem. 284:10004–12.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Anderson KM, Guinan P, Rubenstein M. (2011) The effect of normoxia and hypoxia on a prostate (PC-3) CD44/CD41 cell side fraction. Anticancer Res. 31:487–94.PubMedGoogle Scholar
  133. 133.
    Pidgeon GP, et al. (2007) Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 26:503–24.CrossRefPubMedGoogle Scholar
  134. 134.
    Mimeault M, Batra SK. (2007) Interplay of distinct growth factors during epithelial-mes-enchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann. Oncol. 18:1605–19.CrossRefPubMedGoogle Scholar
  135. 135.
    Zhao H, Peehl DM. (2009) Tumor-promoting phenotype of CD90hi prostate cancer-associated fibroblasts. Prostate. 69:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Chen M, et al. (2010) Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells. Mol. Cancer. 9:89.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Hu Y, et al. (2009) Decorin suppresses prostate tumor growth through inhibition of epidermal growth factor and androgen receptor pathways. Neoplasia. 11:1042–53.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Kasina S, Scherle PA, Hall CL, Macoska JA. (2009) ADAM-mediated amphiregulin shedding and EGFR transactivation. Cell. Prolif. 42:799–812.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Frisch SM, Screaton RA. (2001) Anoikis mechanisms. Curr. Opin. Cell. Biol. 13:555–62.CrossRefPubMedGoogle Scholar
  140. 140.
    Giannoni E, Fiaschi T, Ramponi G, Chiarugi P. (2009) Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals. Oncogene. 28:2074–86.CrossRefPubMedGoogle Scholar
  141. 141.
    Higgins LH, et al. (2009) Hypoxia and the metabolic phenotype of prostate cancer cells. Biochim. Biophys. Acta 1787:1433–43.CrossRefPubMedGoogle Scholar
  142. 142.
    LaTulippe E, et al. (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62:4499–506.PubMedGoogle Scholar
  143. 143.
    Semenza GL, Roth PH, Fang HM, Wang GL. (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269:23757–63.PubMedGoogle Scholar
  144. 144.
    Daly EB, Wind T, Jiang XM, Sun L, Hogg PJ. (2004) Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases. Biochim. Biophys. Acta. 1691:17–22.CrossRefPubMedGoogle Scholar
  145. 145.
    Warburg O. (1956) On the origin of cancer cells. Science. 123:309–14.CrossRefGoogle Scholar
  146. 146.
    Wartenberg M, et al. (2010) Glycolytic pyruvate regulates P-glycoprotein expression in multicellular tumor spheroids via modulation of the intra-cellular redox state. J. Cell. Biochem. 109:434–46.PubMedGoogle Scholar
  147. 147.
    Ben Sahra I, et al. (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 70:2465–75.CrossRefPubMedGoogle Scholar
  148. 148.
    Gottfried E, et al. (2011) Pioglitazone modulates tumor cell metabolism and proliferation in multicellular tumor spheroids. Cancer Chemother. Pharmacol. 67:117–26.CrossRefPubMedGoogle Scholar
  149. 149.
    Lopez-Lazaro M. (2010) A new view of carcinogenesis and an alternative approach to cancer therapy. Mol. Med. 16:144–53.CrossRefPubMedGoogle Scholar
  150. 150.
    Bubendorf L, et al. (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31:578–83.CrossRefPubMedGoogle Scholar
  151. 151.
    Mundy GR. (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2:584–93.CrossRefPubMedGoogle Scholar
  152. 152.
    Chang HH, et al. (2011) Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J. Biomed. Sci. 18:6.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Setlur SR, et al. (2007) Integrative microarray analysis of pathways dysregulated in metastatic prostate cancer. Cancer Res. 67:10296–303.CrossRefPubMedGoogle Scholar
  154. 154.
    LaTulippe E, et al. (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62:4499–506.PubMedGoogle Scholar
  155. 155.
    Suzuki H, et al. (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58:204–9.PubMedGoogle Scholar
  156. 156.
    Whang YE, et al. (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl. Acad. Sci. U. S. A. 95:5246–50.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Wu Z, McRoberts KS, Theodorescu D. (2007) The role of PTEN in prostate cancer cell tropism to the bone micro-environment. Carcinogenesis. 28:1393–400.CrossRefPubMedGoogle Scholar
  158. 158.
    DeHaan AM, Wolters NM, Keller ET, Ignatoski KM. (2009) EGFR ligand switch in late stage prostate cancer contributes to changes in cell signaling and bone remodeling. Prostate. 69:528–37.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Bednarz N, et al. (2010) BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin. Cancer Res. 16:3340–8.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Morrissey C, Vessella RL. (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J. Cell. Biochem. 101:873–86.CrossRefPubMedGoogle Scholar
  161. 161.
    Koeneman KS, Yeung F, Chung LW. (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 39:246–61.CrossRefPubMedGoogle Scholar
  162. 162.
    Festuccia C, et al. (2000) Osteoblast-derived TGF-beta1 modulates matrix degrading protease expression and activity in prostate cancer cells. Int. J. Cancer 85:407–15.CrossRefPubMedGoogle Scholar
  163. 163.
    Zunich SM, et al. (2009) Paracrine sonic hedgehog signalling by prostate cancer cells induces osteoblast differentiation. Mol. Cancer. 8:12.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Karsdal MA, et al. (2002) Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J. Biol. Chem. 277:44061–7.CrossRefPubMedGoogle Scholar
  165. 165.
    Chen SJ, et al. (2007) Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate. 67:557–71.CrossRefPubMedGoogle Scholar
  166. 166.
    Senapati S, et al. (2010) Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the FAK-RhoA signaling pathway. Oncogene. 9:1293–302.CrossRefGoogle Scholar
  167. 167.
    Sun YX, et al. (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J. Cell. Biochem. 89:462–73.CrossRefPubMedGoogle Scholar
  168. 168.
    Sun YX, et al. (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J. Bone Miner. Res. 20:318–29.CrossRefPubMedGoogle Scholar
  169. 169.
    Engl T, et al. (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia. 8:290–301.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Logothetis CJ, Lin SH. (2005) Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5:21–8.CrossRefPubMedGoogle Scholar
  171. 171.
    Schneider A, et al. (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 146:1727–36.CrossRefPubMedGoogle Scholar
  172. 172.
    Sikes RA, et al. (2004) Cellular interactions in the tropism of prostate cancer to bone. Int. J. Cancer. 110:497–503.CrossRefPubMedGoogle Scholar
  173. 173.
    Jung Y, et al. (2009) Expression of PGK1 by prostate cancer cells induces bone formation. Mol. Cancer Res. 7:1595–604.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Zhang J, et al. (2004) In vivo real-time imaging of TGF-beta-induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer. Prostate. 59:360–9.CrossRefPubMedGoogle Scholar
  175. 175.
    Wakchoure S, et al. (2009) Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate. 69:652–61.CrossRefPubMedGoogle Scholar
  176. 176.
    Coulson-Thomas VJ, et al. (2010) Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-beta, and extracellular matrix down-regulation. Exp. Cell Res. 316:3207–26.CrossRefPubMedGoogle Scholar
  177. 177.
    Josson S, Matsuoka Y, Chung LW, Zhau HE, Wang R (2010) Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin. Cell. Dev. Biol. 21:26–32.CrossRefPubMedGoogle Scholar
  178. 178.
    Wang J, Levenson AS, Satcher RL Jr. (2006) Identification of a unique set of genes altered during cell-cell contact in an in vitro model of prostate cancer bone metastasis. Int. J. Mol. Med. 17:849–56.PubMedGoogle Scholar
  179. 179.
    Altieri DC, et al. (2009) Prostate cancer regulatory networks. J. Cell. Biochem. 107:845–52.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Bui M, Reiter RE. (1998) Stem cell genes in androgen-independent prostate cancer. Cancer Metastasis Rev. 17:391–9.CrossRefPubMedGoogle Scholar
  181. 181.
    Tang Y, Hamburger AW, Wang L, Khan MA, Hussain A. (2009) Androgen deprivation and stem cell markers in prostate cancers. Int. J. Clin. Exp. Pathol. 3:128–38.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Tang Y, et al. (2009) The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Prostate. 69:1763–73.CrossRefPubMedGoogle Scholar
  183. 183.
    Tang Y, et al. (2008) Divergent effects of castration on prostate cancer in TRAMP mice: possible implications for therapy. Clin. Cancer Res. 14:2936–43.CrossRefPubMedGoogle Scholar
  184. 184.
    Banach-Petrosky W, et al. (2007) Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res. 67:9089–96.CrossRefPubMedGoogle Scholar
  185. 185.
    Wang J, Eltoum IE, Lamartiniere CA. (2004) Genistein alters growth factor signaling in transgenic prostate model (TRAMP). Mol. Cell. Endocrinol. 219:171–80.CrossRefPubMedGoogle Scholar
  186. 186.
    Li Y, et al. (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res. 66:4816–25.CrossRefPubMedGoogle Scholar
  187. 187.
    Khor TO, et al. (2009) Dietary feeding of diben-zoylmethane inhibits prostate cancer in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 69:7096–102.CrossRefPubMedGoogle Scholar
  188. 188.
    Zhang Y, et al. (2010) A novel sulindac derivative lacking cyclooxygenase-inhibitory activities suppresses carcinogenesis in the transgenic ade-nocarcinoma of mouse prostate model. Cancer Prev. Res. (Phila). 3:885–95.CrossRefGoogle Scholar
  189. 189.
    Konijeti R, et al. (2010) Chemoprevention of prostate cancer with lycopene in the TRAMP model. Prostate. 70:1547–54.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Ghosh R, et al. (2010) Phellodendron amurense bark extract prevents progression of prostate tumors in transgenic adenocarcinoma of mouse prostate: potential for prostate cancer management. Anticancer Res. 30:857–65.PubMedGoogle Scholar
  191. 191.
    Slusarz A, et al. (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res. 70:3382–90.CrossRefPubMedGoogle Scholar
  192. 192.
    Narayanan NK, Nargi D, Randolph C, Narayanan BA. (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer. 125:1–8.CrossRefPubMedGoogle Scholar
  193. 193.
    Raina K, et al. (2008) Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 68:6822–30.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Basu HS, et al. (2009) A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 69:7689–95.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Kawasaki BT, et al. (2009) Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: an integrated molecular profiling approach. Prostate. 69:827–37.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Volate SR, et al. (2010) Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Mol. Cancer Ther. 9:461–70.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Kallifatidis G, et al. (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. 19:188–95.CrossRefPubMedGoogle Scholar
  198. 198.
    Sarkar FH, Li Y, Wang Z, Kong D. (2010) Novel targets for prostate cancer chemoprevention. Endocr. Relat. Cancer. 17:R195–212.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Gingrich JR, et al. (1997) Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 57:4687–91.PubMedGoogle Scholar
  200. 200.
    Zhang ZX, Xu QQ, Huang XB, Zhu JC, Wang XF. (2009) Early and delayed castrations confer a similar survival advantage in TRAMP mice. Asian J. Androl. 11:291–7.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Koeneman KS. (2006) Prostate cancer stem cells, telomerase biology, epigenetic modifiers, and molecular systemic therapy for the androgen-independent lethal phenotype. Urol. Oncol. 24:119–21.CrossRefPubMedGoogle Scholar
  202. 202.
    Marian CO, Wright WE, Shay JW. (2010) The effects of telomerase inhibition on prostate tumor-initiating cells. Int. J. Cancer. 127:321–31.PubMedGoogle Scholar
  203. 203.
    Mimeault M, et al. (2007) Improvement of cytotoxic effects of mitoxantrone on hormone-refractory metastatic prostate cancer cells by co-targeting epidermal growth factor receptor and hedgehog signaling cascades. Growth Factors. 25:400–16.CrossRefPubMedGoogle Scholar
  204. 204.
    Fu Y, et al. (2008) Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc. Natl. Acad. Sci. U. S. A. 105:19444–9.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Singh A, et al. (2010) Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol. Cancer Ther. 9:2365–76.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Nardinocchi L, et al. (2010) Zinc downregulates HIF-1alpha and inhibits its activity in tumor cells in vitro and in vivo. PLoS One. 5:e15048.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Zhao L, et al. (2009) Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling. Cancer Res. 69:7696–703.CrossRefPubMedGoogle Scholar
  208. 208.
    Marian CO, Shay JW. (2009) Prostate tumor-initiating cells: a new target for telomerase inhibition therapy? Biochim. Biophys. Acta. 1792:289–96.CrossRefPubMedGoogle Scholar
  209. 209.
    Sanchez P, et al. (2004) Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. U. S. A. 101:12561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Shaw G, Prowse DM. (2008) Inhibition of androgen-independent prostate cancer cell growth is enhanced by combination therapy targeting Hedgehog and ErbB signalling. Cancer Cell Int. 8:3.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Stein M, et al. (2010) Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 70:1388–94.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Tagg SL, et al. (2008) 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. Br. J. Cancer. 99:1842–8.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Heyfets A, Flescher E. (2007) Cooperative cytotoxicity of methyl jasmonate with anti-cancer drugs and 2-deoxy-D-glucose. Cancer Lett. 250:300–10.CrossRefPubMedGoogle Scholar
  214. 214.
    Lee K, et al. (2010) LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1alpha via upregulation of VHL in a colon cancer cell line. Biochem. Pharmacol. 80:982–9.CrossRefPubMedGoogle Scholar
  215. 215.
    Koh MY, et al. (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 7:90–100.CrossRefPubMedGoogle Scholar
  216. 216.
    Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G. (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 3:233–44.CrossRefPubMedGoogle Scholar
  217. 217.
    Hudson CC, et al. (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22:7004–14.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Majumder PK, et al. (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neo-plasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10:594–601.CrossRefPubMedGoogle Scholar
  219. 219.
    Gao P, et al. (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 12:230–8.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Huang CY, et al. (2007) Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin. Cancer Res. 13:5825–533.CrossRefPubMedGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations