Advertisement

Molecular Medicine

, Volume 17, Issue 11–12, pp 1188–1195 | Cite as

Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

  • Fabio Ghiotto
  • Paolo Marcatili
  • Claudya Tenca
  • Maria Grazia Calevo
  • Xiao-Jie Yan
  • Emilia Albesiano
  • Davide Bagnara
  • Monica Colombo
  • Giovanna Cutrona
  • Charles C. Chu
  • Fortunato Morabito
  • Silvia Bruno
  • Manlio Ferrarini
  • Anna Tramontano
  • Franco Fais
  • Nicholas Chiorazzi
Research Article

Abstract

B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hypermutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV-diversity-joining (IGHV-D-J) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV) genes (IGHV and/or IGK/LV). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation.

Notes

Acknowledgments

This work was supported in part by grants to G Cutrona and F Fais from Compagnia di San Paolo 4824 SD/CV, 2007.2880; to F Fais from Associazione Italiana per la Ricerca sul Cancro (AIRC) (IG-10698) and Associazione “Davide Ciavattini” Onlus; to F Ghiotto from Fondazione Maria Piaggio Casarsa; to A Tramontano from the King Abdullah University of Science and Technology (KAUST), award number KUK-I1-012-43; to F Morabito from AIRC progetto RG6432, cofinanced by Carical, Fondazione “A. Scorza, Provincia di Cosenza”; and to N Chiorazzi from the National Cancer Institute (RO1 CA81554), from the National Center for Research Resources (M01 General Clinical Research Center grant RR018535), and from The Karches Foundation, The Prince Family Foundation, The Marks Foundation, The Jerome Levy Foundation, The Leon Levy Foundation and the Joseph Eletto Leukemia Research Fund. G Cutrona and F Fais would like to thank the Fondazione Internazionale in Medicina Sperimentale (FIRMS) for financial and administrative assistance.

References

  1. 1.
    Damle RN, et al. (2002) B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood. 99:4087–93.CrossRefGoogle Scholar
  2. 2.
    Klein U, et al. (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194:1625–38.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chiorazzi N, Rai KR, Ferrarini M. (2005) Chronic lymphocytic leukemia. N. Engl. J. Med. 352:804–15.CrossRefGoogle Scholar
  4. 4.
    Zenz T, Frohling S, Mertens D, Dohner H, Stilgenbauer S. (2010) Moving from prognostic to predictive factors in chronic lymphocytic leukaemia (CLL). Best Pract. Res. Clin. Haematol. 23:71–84.CrossRefGoogle Scholar
  5. 5.
    Fais F, et al. (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J. Clin. Invest. 102:1515–25.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ghiotto F, et al. (2007) Similarities and differences between the light and heavy chain Ig variable region gene repertoires in chronic lymphocytic leukemia. Mol. Med. 12:300–8.Google Scholar
  7. 7.
    Hadzidimitriou A, et al. (2009) Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood. 113:403–11.CrossRefGoogle Scholar
  8. 8.
    Stamatopoulos K, et al. (2005) Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood. 106:3575–83.CrossRefGoogle Scholar
  9. 9.
    Bagnara D, et al. (2006) IgV gene intraclonal diversification and clonal evolution in B-cell chronic lymphocytic leukaemia. Br. J. Haematol. 133:50–8.PubMedGoogle Scholar
  10. 10.
    Kostareli E, et al. (2010) Intraclonal diversification of immunoglobulin light chains in a subset of chronic lymphocytic leukemia alludes to antigen-driven clonal evolution. Leukemia. 24:1317–24.CrossRefGoogle Scholar
  11. 11.
    Sutton LA, E. Kostareli, A. Hadzidimitriou et al. (2009) Extensive intraclonal diversification in a subgroup of chronic lymphocytic leukemia patients with stereotyped IGHV4-34 receptors: implications for ongoing interactions with antigen. Blood. 114:4460–8.CrossRefGoogle Scholar
  12. 12.
    Damle R, et al. (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 94:1840–7.PubMedGoogle Scholar
  13. 13.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–54.PubMedGoogle Scholar
  14. 14.
    Brezinschek HP, Foster SJ, Dörner T, Brezinschek RI, Lipsky PE. (1998) Pairing of variable heavy and variable kappa chains in individual naive and memory B cells. J. Immunol. 160:4762–7.PubMedGoogle Scholar
  15. 15.
    Cheson BD, et al. (1996) National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 87:4990–7.Google Scholar
  16. 16.
    Pommié C, Levadoux S, Sabatier R, Lefranc G, Lefranc MP. (2004) IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J. Mol. Recognit. 17:17–32.CrossRefGoogle Scholar
  17. 17.
    Marcatili P, Rosi A, Tramontano A. (2008) PIGS: automatic prediction of antibody structures. Bioinformatics. 24:1953–4.CrossRefGoogle Scholar
  18. 18.
    Lefranc MP, et al. (2002) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 27:55–77.CrossRefGoogle Scholar
  19. 19.
    Clark LA, Ganesan S, Papp S, van Vlijmen HW. (2006) Trends in antibody sequence changes during the somatic hypermutation process. J. Immunol. 177:333–40.CrossRefGoogle Scholar
  20. 20.
    Ferrer-Costa C, Orozco M, de la Cruz X. (2002) Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. J. Mol. Biol. 315:771–86.CrossRefGoogle Scholar
  21. 21.
    Ihaka R, Gentleman R. (1996) R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5:299–314.Google Scholar
  22. 22.
    Stamatopoulos K, et al. (2006) Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood. 109:259–70.CrossRefGoogle Scholar
  23. 23.
    Hershberg U, Shlomchik MJ. (2006) Differences in potential for amino acid change after mutation reveals distinct strategies for kappa and lambda light-chain variation. Proc. Natl. Acad. Sci. U. S. A. 103:15963–8.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G. (1999) Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J. Mol. Biol. 285:895–901.CrossRefGoogle Scholar
  25. 25.
    Itoh K, et al. (2000) Immunoglobulin heavy chain variable region gene replacement As a mechanism for receptor revision in rheumatoid arthritis synovial tissue B lymphocytes. J. Exp. Med. 192:1151–64.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wilson PC, et al. (2000) Receptor revision of immunoglobulin heavy chain variable region genes in normal human B lymphocytes. J. Exp. Med. 191:1881–94.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Chiorazzi N, Hatzi K, Albesiano E. (2005) B-cell chronic lymphocytic leukemia, a clonal disease of B lymphocytes with receptors that vary in specificity for (auto)antigens. Ann. N. Y. Acad. Sci. 1062:1–12.CrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Fabio Ghiotto
    • 1
  • Paolo Marcatili
    • 2
  • Claudya Tenca
    • 1
  • Maria Grazia Calevo
    • 3
  • Xiao-Jie Yan
    • 4
  • Emilia Albesiano
    • 4
  • Davide Bagnara
    • 4
  • Monica Colombo
    • 5
  • Giovanna Cutrona
    • 5
  • Charles C. Chu
    • 4
  • Fortunato Morabito
    • 6
  • Silvia Bruno
    • 1
  • Manlio Ferrarini
    • 5
  • Anna Tramontano
    • 7
    • 8
  • Franco Fais
    • 1
  • Nicholas Chiorazzi
    • 4
    • 9
    • 10
    • 11
  1. 1.Department of Experimental MedicineUniversity of GenovaGenovaItaly
  2. 2.Department of Biochemical Sciences “Rossi Fanelli”University of Rome “La Sapienza”RomeItaly
  3. 3.Epidemiology and Biostatistics Service, Scientific DirectorateG. Gaslini InstituteGenoaItaly
  4. 4.The Feinstein Institute for Medical ResearchNorth Shore-LIJ Health SystemManhassetUSA
  5. 5.Division of Medical Oncology CIstituto Nazionale per la Ricerca sul CancroGenoaItaly
  6. 6.Unità Operativa di Ematologia; Dipartimento di Medicina InternaAzienda Ospedaliera di CosenzaCosenzaItaly
  7. 7.Department of PhysicsSapienza University of RomeRomeItaly
  8. 8.Istituto Pasteur Fondazione Cenci BolognettiSapienza University of RomeRomeItaly
  9. 9.Department of MedicineNorth Shore University HospitalManhassetUSA
  10. 10.Department of Cell BiologyAlbert Einstein School of MedicineBronxUSA
  11. 11.Albert Einstein School of MedicineBronxUSA

Personalised recommendations