Molecular Medicine

, Volume 17, Issue 9–10, pp 865–874 | Cite as

Acute-Phase Protein α1-Antitrypsin Inhibits Neutrophil Calpain I and Induces Random Migration

  • Mariam Al-Omari
  • Elena Korenbaum
  • Matthias Ballmaier
  • Ulrich Lehmann
  • Danny Jonigk
  • Dietmar J. Manstein
  • Tobias Welte
  • Ravi Mahadeva
  • Sabina Janciauskiene
Invited Research Article


A rapid recruitment of neutrophils to sites of injury or infection is a hallmark of the inflammatory response and is required for effective host defense against pathogenic stimuli. However, neutrophil-mediated inflammation can also lead to chronic tissue destruction; therefore, a better understanding of the mechanisms underlying neutrophil influx and activation is of critical importance. We have previously shown that the acute phase protein α1-antitrypsin (AAT) inhibits neutrophil chemotaxis. In this study, we examine mechanisms related to the effect of AAT on neutrophil responses. We report a previously unknown function of AAT to inactivate calpain I (μ-calpain) and to induce a rapid cell polarization and random migration. These effects of AAT coincided with a transient rise in intracellular calcium, increase in intracellular lipids, activation of the Rho GTPases, Rac1 and Cdc42, and extracellular signal-regulated kinase (ERK1/2). Furthermore, AAT caused a significant inhibition of nonstimulated as well as formyl-metleu-phe (fMLP)-stimulated neutrophil adhesion to fibronectin, strongly inhibited lipopolysaccharide-induced IL-8 release and slightly delayed neutrophil apoptosis. The results presented here broaden our understanding of the regulation of calpain-related neutrophil functional activities, and provide the impetus for new studies to define the role of AAT and other acute phase proteins in health and disease.



This study was supported by the Swedish Research Council (SJ) and Hannover Medical School. RM was supported by the Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre.


  1. 1.
    Gabay C, Kushner I. (1999) Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340:448–54.CrossRefPubMedGoogle Scholar
  2. 2.
    Köhnlein T, Welte T. (2008) Alpha-1 antitrypsin deficiency: pathogenesis, clinical presentation, diagnosis, and treatment. Am. J. Med. 121:123–9.CrossRefGoogle Scholar
  3. 3.
    Fournier T, Medjoubi NN, Porquet D. (2000) Alpha-1-acid glycoprotein. Biochim. Biophys. Acta. 1482:157–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Lainé E, et al. (1990) Modulation of human polymorphonuclear neutrophil functions by alpha 1-acid glycoprotein. Inflammation. 14:1–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Vasson MP, Roch-Arveiller M, Couderc R, Baguet JC, Raichvarg D. (1994) Effects of alpha-1 acid glycoprotein on human polymorphonuclear neutrophils: influence of glycan microheterogeneity. Clin. Chim. Acta. 224:65–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Rinaldi M, Ceciliani F, Lecchi C, Moroni P, Bannerman DD. (2008) Differential effects of alpha1-acid glycoprotein on bovine neutrophil respiratory burst activity and IL-8 production. Vet. Immunol. Immunopathol. 26:199–210.CrossRefGoogle Scholar
  7. 7.
    Bucurenci N, Blake DR, Chidwick K, Winyard PG. (1992) Inhibition of neutrophil superoxide production by human plasma alpha 1-antitrypsin. FEBS Lett. 300:21–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Tilg H, Vannier E, Vachino G, Dinarello CA, Mier JW. (1993) Antiinflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells. J. Exp. Med. 178:1629–36.CrossRefPubMedGoogle Scholar
  9. 9.
    Janciauskiene S, Zelvyte I, Jansson L, Stevens T. (2004) Divergent effects of alpha1-antitrypsin on neutrophil activation, in vitro. Biochem. Biophys. Res. Commun. 315:288–96.CrossRefPubMedGoogle Scholar
  10. 10.
    Daemen MA, et al. (2000) Functional protection by acute phase proteins alpha(1)-acid glycoprotein and alpha(1)-antitrypsin against ischemia/ reperfusion injury by preventing apoptosis and inflammation. Circulation. 102:1420–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhong W, et al. (1998) Effect of human C-reactive protein on chemokine and chemotactic factor-induced neutrophil chemotaxis and signaling. J. Immunol. 161:2533–40.PubMedGoogle Scholar
  12. 12.
    Heuertz RM, Tricomi SM, Ezekiel UR, Webster RO. (1999) C-reactive protein inhibits chemotactic peptide-induced p38 mitogen-activated protein kinase activity and human neutrophil movement. J. Biol. Chem. 274:17968–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Quaye IK. (2008) Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 102:735–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Griese M, et al. (2007) Alpha1-antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur. Respir. J. 29:240–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Subramaniyam D, et al. (2010) Effects of alpha 1-antitrypsin on endotoxin-induced lung inflammation in vivo. Inflamm. Res. 59:571–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Hill AT, Campbell EJ, Bayley DL, Hill SL, Stockley RA. (1999) Evidence for excessive bronchial inflammation during an acute exacerbation of chronic obstructive pulmonary disease in patients with alpha(1)-antitrypsin deficiency (PiZ). Am. J. Respir. Crit. Care Med. 160:1968–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Petrache I, et al. (2006) Alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol. 169:1155–66.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang B, et al. (2007) Alpha1-antitrypsin protects beta-cells from apoptosis. Diabetes 56:1316–23.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Janciauskiene S, et al. (2008) Alpha1-antitrypsin inhibits the activity of the matriptase catalytic domain in vitro. Am. J. Respir. Cell Mol. Biol. 39: 631–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bergin DA, et al. (2010) α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Invest. 120:4236–50.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Howard OM, Dong HF, Shirakawa AK, Oppenheim JJ. (2000) LEC induces chemotaxis and adhesion by interacting with CCR1 and CCR8. Blood. 96:840–5.PubMedGoogle Scholar
  22. 22.
    Huth J, et al. (2010) Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. BMC Cell Biol. 11:24.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Newcomb JK, Pike BR, Zhao X, Hayes RL. (2000) Concurrent assessment of calpain and caspase-3 activity by means of Western blots of protease-specific spectrin breakdown products. Methods Mol. Biol. 144:219–23.PubMedGoogle Scholar
  24. 24.
    Lokuta MA, Nuzzi PA, Huttenlocher A. (2003) Calpain regulates neutrophil chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 100:4006–11.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Katsube M, et al. (2008) Calpain-mediated regulation of the distinct signaling pathways and cell migration in human neutrophils. J. Leukoc. Biol. 84:255–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Czogalla A, Sikorski AF. (2005) Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell. Mol. Life Sci. 62:1913–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Servant G, et al. (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 287:1037–40.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang KK. (1990) Developing selective inhibitors of calpain. Trends Pharmacol. Sci. 11:139–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Xu J, et al. (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell. 114:201–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Niggli V. (2003) Signaling to migration in neutrophils: importance of localized pathways. Intern. J. Biochem. Cell Biol. 35:1619–38.CrossRefGoogle Scholar
  31. 31.
    Kruskal BA, Shak S, Maxfield FR. (1986) Spreading of human neutrophils is immediately preceded by a large increase in cytoplasmic free calcium. Proc. Natl. Acad. Sci. U. S. A. 83:2919–23.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marks PW, Maxfield FR. (1990) Local and global changes in cytosolic free calcium in neutrophils during chemotaxis and phagocytosis. Cell Calcium. 11:181–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Kindzelskii AL, Petty HR. (2003) Intracellular calcium waves accompany neutrophil polarization, formylmethionylleucylphenylalanine stimulation, and phagocytosis: a high speed microscopy study. J. Immunol. 170:64–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Weiner OD, et al. (2002) A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4:509–13.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dransfield I, et al. (1994) Neutrophil apoptosis is associated with a reduction in CD16 (FcyRIII) expression J. Immunol. 153:1254–63.PubMedGoogle Scholar
  36. 36.
    Nuzzi PA, Senetar MA, Huttenlocher A. (2007) Asymmetric localization of calpain 2 during neutrophil chemotaxis. Mol. Biol. Cell. 18:795–805.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ray SK, et al. (2003) Calpain inhibitor prevented apoptosis and maintained transcription of proteolipid protein and myelin basic protein genes in rat spinal cord injury. J. Chem. Neuroanat. 26:119–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Butler J et al. (2009) Involvement of calpain in the process of Jurkat T cell chemotaxis. J. Neurosci. Res. 87:626–35.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wiemer AJ, Lokuta M, Surfus JC. (2010) Calpain inhibition impairs TNF-α-mediated neutrophil adhesion, arrest and oxidative burst. Mol. Immunol. 47:894–902.CrossRefPubMedGoogle Scholar
  40. 40.
    Price LS, et al. (2003) Calcium signaling regulates translocation and activation of Rac. J. Biol. Chem. 278:39413–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Raftopoulou M, Hall A. (2004) Cell migration: Rho GTPases lead the way. Dev. Biol. 265:23–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Pankov R, et al. (2005) A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170:793–802.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chung CY, Funamoto S, Firtel RA. (2001) Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26:557–66.CrossRefPubMedGoogle Scholar
  44. 44.
    Arthur JS, Crawford C. (1996) Investigation of the interaction of m calpain with phospholipids: calpain-phospholipid interactions. Biochim. Biophys. Acta. 1293:201–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Pontremoli S, et al. (1985) Role of phospholipids in the activation of the Ca2+-dependent neutral proteinase of human erythrocytes. Biochem. Biophys. Res. Commun. 129:389–95.CrossRefPubMedGoogle Scholar
  46. 46.
    Ducharme NA, Bickel PE. (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149: 942–9.CrossRefGoogle Scholar
  47. 47.
    Pierini LM, et al. (2003) Membrane lipid organization is critical for human neutrophil polarization. J. Biol. Chem. 278:10831–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Subramaniyam D, et al. (2010) Cholesterol rich lipid raft microdomains are gateway for acute phase protein, SERPINA1. Int. J. Biochem. Cell Biol. 42:1562–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Nixon RA. (2003) The calpains in aging and aging-related diseases. Ageing Res. Rev. 2:407–18.CrossRefPubMedGoogle Scholar
  50. 50.
    Vosler PS, Brennan CS, Chen J. (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol. Neurobiol. 38: 78–100.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Andersen SS, Bi GQ. (2000) Axon formation: a molecular model for the generation of neuronal polarity. Bioessays. 22:172–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Braun C, et al. (1999) Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type. Int. J. Cancer. 84:6–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Kimura Y, Saya H, Nakao M. (2000) Calpaindependent proteolysis of NF2 protein: involvement in schwannomas and meningiomas. Neuropathology. 20:153–60.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang W, Lane RD, Mellgren RL. (1996) The major calpain isozymes are long-lived proteins: design of an antisense strategy for calpain depletion in cultured cells. J. Biol. Chem. 271:18825–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Carragher NO, et al. (2002) v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol. Cell Biol. 22:257–69.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Janciauskiene S, et al. (2011) The discovery of α1-antitrypsin and its role in health and disease. Respir Med. Feb 28. [Epub ahead of print]Google Scholar
  57. 57.
    Lewis EC, et al. (2005) Alpha1-antitrypsin monotherapy prolongs islet allograft survival in mice. Proc. Natl. Acad. Sci. U. S. A. 102:12153–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Mariam Al-Omari
    • 1
    • 5
  • Elena Korenbaum
    • 2
    • 5
  • Matthias Ballmaier
    • 3
    • 5
  • Ulrich Lehmann
    • 4
    • 5
  • Danny Jonigk
    • 4
    • 5
  • Dietmar J. Manstein
    • 2
    • 5
  • Tobias Welte
    • 1
    • 5
  • Ravi Mahadeva
    • 4
    • 5
  • Sabina Janciauskiene
    • 1
    • 5
  1. 1.Department of PulmonologyHannover Medical SchoolHannoverGermany
  2. 2.Department of Biophysical ChemistryHannover Medical SchoolHannoverGermany
  3. 3.Cell Sorting Core FacilityHannover Medical SchoolHannoverGermany
  4. 4.Department of PathologyHannover Medical SchoolHannoverGermany
  5. 5.Department of Respiratory MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations