Molecular Medicine

, Volume 17, Issue 9–10, pp 875–882 | Cite as

Translational Research and Therapeutic Perspectives in Dysferlinopathies

  • Florian Barthélémy
  • Nicolas Wein
  • Martin Krahn
  • Nicolas Lévy
  • Marc Bartoli
Review Article


Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene, encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B) and the second most common being LGMD. Symptoms generally appear at the end of childhood and, although disease progression is typically slow, walking impairments eventually result. Dysferlin is a modular type II transmembrane protein for which numerous binding partners have been identified. Although dysferlin function is only partially elucidated, this large protein contains seven calcium sensor C2 domains, shown to play a key role in muscle membrane repair. On the basis of this major function, along with detailed clinical observations, it has been possible to design various therapeutic approaches for dysferlin-deficient patients. Among them, exon-skipping and minigene transfer strategies have been evaluated at the preclinical level and, to date, represent promising approaches for clinical trials. This review aims to summarize the pathophysiology of dysferlinopathies and to evaluate the therapeutic potential for treatments currently under development.



We warmly acknowledge the constant support of the Association Française contre les Myopathies (AFM) and the Jain Foundation. F Barthélémy and N Wein received PhD fellowship grants from AFM and the Fondation pour la Recherche Médicale (FRM), respectively.


  1. 1.
    Bashir R, et al. (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet. 20:37–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu J, et al. (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20:31–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Moore SA, et al. (2006) Limb-girdle muscular dystrophy in the United States. J. Neuropathol. Exp. Neurol. 65:995–1003.CrossRefPubMedGoogle Scholar
  4. 4.
    Nguyen K, et al. (2007) Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. Arch. Neurol. 64:1176–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Ueyama H, et al. (2002) Clinical heterogeneity in dysferlinopathy. Intern. Med. 41:532–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Pramono ZA, et al. (2009) Identification and characterisation of human dysferlin transcript variants: implications for dysferlin mutational screening and isoforms. Hum. Genet. 125:413–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Krahn M, et al. (2009) Analysis of the DYSF mutational spectrum in a large cohort of patients. Hum. Mutat. 30:E345–75.CrossRefPubMedGoogle Scholar
  8. 8.
    Krahn M, et al. (2009) Identification of different genomic deletions and one duplication in the dysferlin gene using multiplex ligation-dependent probe amplification and genomic quantitative PCR. Genet. Test. Mol. Biomarkers. 13:439–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Krahn M, Labelle V, Borges A, Bartoli M, Levy N. (2010) Exclusion of mutations in the dysferlin alternative exons 1 of DYSF-v1, 5a, and 40a in a cohort of 26 patients. Genet. Test. Mol. Biomarkers. 14:153–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Washington NL, Ward S. (2006) FER-1 regulates Ca2+-mediated membrane fusion during C. elegans spermatogenesis. J. Cell Sci. 119:2552–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Roux I, et al. (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell. 127:277–89.CrossRefPubMedGoogle Scholar
  12. 12.
    Yasunaga S, et al. (1999) A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat. Genet. 21:363–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Davis DB, Doherty KR, Delmonte AJ, McNally EM. (2002) Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J. Biol. Chem. 277:22883–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Doherty KR, et al. (2005) Normal myoblast fusion requires myoferlin. Development. 132:5565–75.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Doherty KR, et al. (2008) The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. J. Biol. Chem. 283:20252–60.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Demonbreun AR, et al. (2010) Myoferlin is required for insulin-like growth factor response and muscle growth. FASEB J. 24:1284–95.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang D, Aravind L. (2010) Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene. 469:18–30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nalefski EA, Falke JJ. (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5:2375–90.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Therrien C, Di Fulvio S, Pickles S, Sinnreich M. (2009) Characterization of lipid binding specificities of dysferlin C2 domains reveals novel interactions with phosphoinositides. Biochemistry. 48:2377–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Lek A, Lek M, North KN, Cooper ST. (2010) Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins. BMC Evol. Biol. 10:231.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vafiadaki E, et al. (2001) Cloning of the mouse dysferlin gene and genomic characterization of the SJL-Dysf mutation. Neuroreport. 12:625–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Cho W, Stahelin RV. (2006) Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta. 1761:838–49.CrossRefPubMedGoogle Scholar
  23. 23.
    Shao X, Davletov BA, Sutton RB, Sudhof TC, Rizo J. (1996) Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 273:248–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR. (1995) Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell. 80:929–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Rechsteiner M, Rogers SW. (1996) PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Ho M, et al. (2002) A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann. Neurol. 51:129–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Vandre DD, et al. (2007) Dysferlin is expressed in human placenta but does not associate with caveolin. Biol. Reprod. 77:533–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Anderson LV, et al. (1999) Dysferlin is a plasma membrane protein and is expressed early in human development. Hum. Mol. Genet. 8:855–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Bansal D, et al. (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 423:168–72.CrossRefGoogle Scholar
  30. 30.
    Matsuda C, et al. (1999) Dysferlin is a surface membrane-associated protein that is absent in Miyoshi myopathy. Neurology. 53:1119–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Roche JA, Lovering RM, Bloch RJ. (2008) Impaired recovery of dysferlin-null skeletal muscle after contraction-induced injury in vivo. Neuroreport. 19:1579–84.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bansal D, Campbell KP. (2004) Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 14:206–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Doherty KR, McNally EM. (2003) Repairing the tears: dysferlin in muscle membrane repair. Trends Mol. Med. 9:327–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Meldolesi J. (2003) Surface wound healing: a new, general function of eukaryotic cells. J. Cell. Mol. Med. 7:197–203.CrossRefPubMedGoogle Scholar
  35. 35.
    von der Hagen M, et al. (2005) The differential gene expression profiles of proximal and distal muscle groups are altered in pre-pathological dysferlin-deficient mice. Neuromuscul. Disord. 15:863–77.CrossRefPubMedGoogle Scholar
  36. 36.
    Cenacchi G, Fanin M, De Giorgi LB, Angelini C. (2005) Ultrastructural changes in dysferlinopathy support defective membrane repair mechanism. J. Clin. Pathol. 58:190–5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Piccolo F, Moore SA, Ford GC, Campbell KP. (2000) Intracellular accumulation and reduced sarcolemmal expression of dysferlin in limb: girdle muscular dystrophies. Ann. Neurol. 48:902–12.CrossRefPubMedGoogle Scholar
  38. 38.
    de Luna N, et al. (2006) Absence of dysferlin alters myogenin expression and delays human muscle differentiation “in vitro.” J. Biol. Chem. 281:17092–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Klinge L, et al. (2010) Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve. 41:166–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Roche JA, et al. (2010) Extensive mononuclear infiltration and myogenesis characterize recovery of dysferlin-null skeletal muscle from contraction-induced injuries. Am. J. Physiol. Cell Physiol. 298:C298–312.CrossRefPubMedGoogle Scholar
  41. 41.
    De Luna N, et al. (2010) Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J. Neuropathol. Exp. Neurol. 69:643–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Hernandez-Deviez DJ, et al. (2006) Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum. Mol. Genet. 15:129–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Capanni C, et al. (2003) Dysferlin in a hyperCK-aemic patient with caveolin 3 mutation and in C2C12 cells after p38 MAP kinase inhibition. Exp. Mol. Med. 35:538–44.CrossRefPubMedGoogle Scholar
  44. 44.
    Matsuda C, et al. (2001) The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet. 10:1761–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Walter MC, et al. (2003) Variable reduction of caveolin-3 in patients with LGMD2B/MM. J. Neurol. 250:1431–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Cagliani R, et al. (2005) Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Hum. Mutat. 26:283.CrossRefPubMedGoogle Scholar
  47. 47.
    Lennon NJ, et al. (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem. 278:50466–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Matsuda C, et al. (2005) Dysferlin interacts with affixin (beta-parvin) at the sarcolemma. J. Neuropathol. Exp. Neurol. 64:334–40.CrossRefPubMedGoogle Scholar
  49. 49.
    Anderson LV, et al. (2000) Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul. Disord. 10:553–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Huang Y, et al. (2008) Calpain 3 is a modulator of the dysferlin protein complex in skeletal muscle. Hum. Mol. Genet. 17:1855–66.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Duguez S, Bartoli M, Richard I. (2006) Calpain 3: a key regulator of the sarcomere? FEBS J. 273: 3427–36.CrossRefPubMedGoogle Scholar
  52. 52.
    Borgonovo B, et al. (2002) Regulated exocytosis: a novel, widely expressed system. Nat. Cell. Biol. 4:955–62.CrossRefPubMedGoogle Scholar
  53. 53.
    Haase H, et al. (1999) Signaling from betaadrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J. 13:2161–72.CrossRefPubMedGoogle Scholar
  54. 54.
    Hohaus A, et al. (2002) The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J. 16:1205–16.CrossRefPubMedGoogle Scholar
  55. 55.
    Benaud C, et al. (2004) AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J. Cell Biol. 164: 133–144.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gentil BJ, et al. (2001) The giant protein AHNAK is a specific target for the calcium- and zincbinding S100B protein: potential implications for Ca2+ homeostasis regulation by S100B. J. Biol. Chem. 276:23253–61.CrossRefPubMedGoogle Scholar
  57. 57.
    Huang Y, et al. (2007) AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB J. 21:732–42.CrossRefPubMedGoogle Scholar
  58. 58.
    Azakir BA, Di Fulvio S, Therrien C, Sinnreich M. (2010) Dysferlin interacts with tubulin and microtubules in mouse skeletal muscle. PLoS One. 5:e10122.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Marg A, Haase H, Neumann T, Kouno M, Morano I. (2010) AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness. Biochem. Biophys. Res. Commun. 401:143–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Cai C, et al. (2009) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J. Biol. Chem. 284:15894–902.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Franzini-Armstrong C. (1991) Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev. Biol. 146:353–63.CrossRefPubMedGoogle Scholar
  62. 62.
    Klinge L, et al. (2007) From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis. FASEB J. 21:1768–76.CrossRefPubMedGoogle Scholar
  63. 63.
    Evesson FJ, et al. (2010) Reduced plasma membrane expression of dysferlin mutants is attributed to accelerated endocytosis via a syntaxin-4-associated pathway. J Biol. Chem. 285:28529–39.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gallardo E, et al. (2001) Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology. 57:2136–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Aoki M, et al. (2001) Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology. 57:271–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Nguyen K, et al. (2005) Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Hum. Mutat. 26:165.CrossRefPubMedGoogle Scholar
  67. 67.
    Weiler T, et al. (1999) Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum. Mol. Genet. 8:871–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Argov Z, et al. (2000) Muscular dystrophy due to dysferlin deficiency in Libyan Jews: clinical and genetic features. Brain. 123:1229–37.CrossRefPubMedGoogle Scholar
  69. 69.
    Cagliani R, et al. (2003) Molecular analysis of LGMD-2B and MM patients: identification of novel DYSF mutations and possible founder effect in the Italian population. Neuromuscul. Disord. 13:788–95.CrossRefPubMedGoogle Scholar
  70. 70.
    Vilchez JJ, et al. (2005) Identification of a novel founder mutation in the DYSF gene causing clinical variability in the Spanish population. Arch. Neurol. 62:1256–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Leshinsky-Silver E, et al. (2007) Dysferlinopathy in the Jews of the Caucasus: a frequent mutation in the dysferlin gene. Neuromuscul Disord 17:950–4.CrossRefPubMedGoogle Scholar
  72. 72.
    Sinnreich M, Therrien C, Karpati G. (2006) Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy. Neurology. 66:1114–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Wenzel K, et al. (2006) Novel sequence variants in dysferlin-deficient muscular dystrophy leading to mRNA decay and possible C2-domain misfolding. Hum. Mutat. 27:599–600.CrossRefPubMedGoogle Scholar
  74. 74.
    Fujita E, et al. (2007) Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet. 16:618–29.CrossRefPubMedGoogle Scholar
  75. 75.
    Spuler S, et al. (2008) Dysferlin-deficient muscular dystrophy features amyloidosis. Ann. Neurol. 63:323–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Therrien C, Dodig D, Karpati G, Sinnreich M. (2006) Mutation impact on dysferlin inferred from database analysis and computer-based structural predictions. J. Neurol. Sci. 250:71–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Chaouch S, et al. (2009) Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exonskipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Hum. Gene Ther. 20:784–90.CrossRefPubMedGoogle Scholar
  78. 78.
    Bittner RE, et al. (1999) Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nat. Genet. 23: 141–2.CrossRefPubMedGoogle Scholar
  79. 79.
    Ho M, et al. (2004) Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum. Mol. Genet. 13:1999–2010.CrossRefPubMedGoogle Scholar
  80. 80.
    Lostal W, et al. (2010) Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum. Mol. Genet. 19:1897–907.CrossRefPubMedGoogle Scholar
  81. 81.
    Millay DP, et al. (2009) Genetic manipulation of dysferlin expression in skeletal muscle: novel insights into muscular dystrophy. Am. J. Pathol. 175:1817–23.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Daniele N, Richard I, Bartoli M. (2007) Ins and outs of therapy in limb girdle muscular dystrophies. Int. J. Biochem. Cell. Biol. 39:1608–24.CrossRefPubMedGoogle Scholar
  83. 83.
    Bueler H. (1999) Adeno-associated viral vectors for gene transfer and gene therapy. Biol. Chem. 380:613–22.CrossRefPubMedGoogle Scholar
  84. 84.
    Yan Z, Zhang Y, Duan D, Engelhardt JF. (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl. Acad. Sci. U. S. A. 97:6716–21.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Xu Z, et al. (2004) Trans-splicing adenoassociated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum. Gene Ther. 15:896–905.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Allocca M, et al. (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J. Clin. Invest. 118:1955–64.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hirsch ML, Agbandje-McKenna M, Samulski RJ. (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol. Ther. 18:6–8.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Krahn M, et al. (2010) A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy. Sci. Transl. Med. 2:50ra69.CrossRefPubMedGoogle Scholar
  89. 89.
    Brun C, et al. (2003) U7 snRNAs induce correction of mutated dystrophin pre-mRNA by exon skipping. Cell. Mol. Life Sci. 60:557–66.CrossRefPubMedGoogle Scholar
  90. 90.
    van Deutekom JC, et al. (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357:2677–86.CrossRefPubMedGoogle Scholar
  91. 91.
    Kinali M, et al. (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 8:918–28.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Levy N, et al. (2010) Therapeutic exon ‘switching’ for dysferlinopathies? Eur. J. Hum. Genet. 18:969–70; author reply 971.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wein N, et al. (2010) Efficient bypass of mutations in dysferlin deficient patient cells by anti-sense-induced exon skipping. Hum. Mutat. 31:136–42.CrossRefPubMedGoogle Scholar
  94. 94.
    Wang B, et al. (2010) Membrane blebbing as an assessment of functional rescue of dysferlin-deficient human myotubes via nonsense suppression. J. Appl. Physiol. 109:901–5.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Hattori H, et al. (2007) A novel compound heterozygous dysferlin mutation in Miyoshi myopathy siblings responding to dantrolene. Eur. J. Neurol. 14:1288–91.CrossRefPubMedGoogle Scholar
  96. 96.
    Selcen D, Stilling G, Engel AG. (2001) The earliest pathologic alterations in dysferlinopathy. Neurology. 56:1472–81.CrossRefPubMedGoogle Scholar
  97. 97.
    Albrecht DE, et al. (2009) 3rd Annual Dysferlin Conference 2–5 June 2009, Boston, Massachusetts, USA. Neuromuscul. Disord. 19:867–73.CrossRefPubMedGoogle Scholar
  98. 98.
    Lerario A, et al. (2010) Effects of rituximab in two patients with dysferlin-deficient muscular dystrophy. BMC Musculoskelet. Disord. 11:157.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Kesari A, et al. (2008) Dysferlin deficiency shows compensatory induction of Rab27A/Slp2a that may contribute to inflammatory onset. Am. J. Pathol. 173:1476–87.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rayavarapu S, et al. (2010) Characterization of dysferlin deficient SJL/J mice to assess preclinical drug efficacy: fasudil exacerbates muscle disease phenotype. PLoS One. 5:e12981.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Florian Barthélémy
    • 1
    • 2
  • Nicolas Wein
    • 1
    • 2
  • Martin Krahn
    • 1
    • 2
    • 3
  • Nicolas Lévy
    • 1
    • 2
    • 3
  • Marc Bartoli
    • 1
    • 2
  1. 1.Marseille Medical SchoolUniversity of the MediterraneanMarseilleFrance
  2. 2.Faculté de Médecine de MarseilleUniversité de la Méditerranée, Inserm UMR_S 910 “Génétique Médicale et Génomique Fonctionnelle”MarseilleFrance
  3. 3.Department of Medical GeneticsMarseille Children’s HospitalMarseilleFrance

Personalised recommendations