Molecular Medicine

, Volume 17, Issue 5–6, pp 378–390 | Cite as

Histone Deacetylase (HDAC) Inhibition as a Novel Treatment for Diabetes Mellitus

  • Dan P Christensen
  • Mattias Dahllöf
  • Morten Lundh
  • Daniel N Rasmussen
  • Mette D Nielsen
  • Nils Billestrup
  • Lars G Grunnet
  • Thomas Mandrup-Poulsen
Review Article


Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1β as a key mediator of insulin resistance and β-cell failure. In addition to improving insulin resistance and preventing β-cell inflammatory damage, there is evidence of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote β-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes.



This review was written with financial support from the Novo Nordisk Foundation, the Juvenile Diabetes Research Foundation International grant 26-2008-893, the University of Copenhagen and the Novo Nordisk TRAP Program.


  1. 1.
    Raj SM, et al. (2009) No association of multiple type 2 diabetes loci with type 1 diabetes. Diabetologia 52:2109–16.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Barrett JC, et al. (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41:703–7.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. (2009) Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155:173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Prokopenko I, McCarthy MI, Lindgren CM. (2008) Type 2 diabetes: new genes, new understanding. Trends Genet. 24:613–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilkin TJ. (2007) Changing perspectives in diabetes: their impact on its classification. Diabetologia 50:1587–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Butler AE, et al. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakuraba H, et al. (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia 45:85–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Yoon KH, et al. (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 88:2300–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Ehses JA, Ellingsgaard H, Boni-Schnetzler M, Donath MY. (2009) Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch. Physiol. Biochem. 115:240–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Masters SL, et al. (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol. 11:897–904.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mandrup-Poulsen T. (2010) IAPP boosts islet macrophage IL-1 in type 2 diabetes. Nat. Immunol. 11:881–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Donath MY, Storling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. (2008) Cytokines and beta-cell biology: from concept to clinical translation. Endocr. Rev. 29:334–50.CrossRefGoogle Scholar
  13. 13.
    Mandrup-Poulsen T. (1996) The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 39:1005–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Stienstra R, et al. (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12:593–605.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Maedler K, et al. (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110:851–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Maedler K, et al. (2004) Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc. Natl. Acad. Sci. U. S. A. 101:8138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K. (2008) The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 149:2208–18.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Spranger J, et al. (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Larsen CM, et al. (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356:1517–26.CrossRefGoogle Scholar
  20. 20.
    Larsen CM, et al. (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32:1663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Halili MA, Andrews MR, Sweet MJ, Fairlie DP. (2009) Histone deacetylase inhibitors in inflammatory disease. Curr. Top. Med. Chem. 9:309–19.CrossRefGoogle Scholar
  22. 22.
    Gregoretti IV, Lee YM, Goodson HV. (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338:17–31.CrossRefGoogle Scholar
  23. 23.
    Choudhary C, et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40.CrossRefGoogle Scholar
  24. 24.
    Mankan AK, Lawless MW, Gray SG, Kelleher D, McManus R. (2009) NF-kappaB regulation: the nuclear response. J. Cell. Mol. Med. 13:631–43.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Giannoukakis N, Rudert WA, Trucco M, Robbins PD. (2000) Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an Ikappa B repressor. J. Biol. Chem. 275:36509–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Heimberg H, et al. (2001) Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes 50:2219–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Larsen L, et al. (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50:779–89.CrossRefGoogle Scholar
  28. 28.
    Lee HB, Noh H, Seo JY, Yu MR, Ha H. (2007) Histone deacetylase inhibitors: a novel class of therapeutic agents in diabetic nephropathy. Kidney Int. Suppl. S61-6.CrossRefGoogle Scholar
  29. 29.
    Villeneuve LM, Natarajan R. (2010) The role of epigenetics in the pathology of diabetic complications. Am. J. Physiol. Renal Physiol. 299:F14–25.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Crosson CE, Mani SK, Husain S, Alsarraf O, Menick DR. (2010) Inhibition of histone deacetylase protects the retina from ischemic injury. Invest. Ophthalmol. Vis. Sci. 51:3639–45.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bonnefond A, Froguel P, Vaxillaire M. (2010) The emerging genetics of type 2 diabetes. Trends Mol. Med. 16:407–16.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pociot F, et al. (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59:1561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nerup J, Pociot F. (2001) A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am. J. Hum. Genet. 69:1301–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Xiang K, et al. (2004) Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes 53:228–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Redondo MJ, Fain PR, Eisenbarth GS. (2001) Genetics of type 1A diabetes. Recent Prog. Horm. Res. 56:69–89.PubMedCrossRefGoogle Scholar
  36. 36.
    Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance: a population-based twin study. Diabetologia 42:139–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Pinney SE, Simmons RA. (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol. Metab. 21:223–29.PubMedCrossRefGoogle Scholar
  38. 38.
    Park JH, Stoffers DA, Nicholls RD, Simmons RA. (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest. 118:2316–24.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. (2008) Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J. Biol. Chem. 283:13611–26.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kim SJ, Nian C, McIntosh CH. (2009) Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 modulate beta-cell chromatin structure. J. Biol. Chem. 284:12896–904.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gray SG, De Meyts P. (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab. Res. Rev. 21:416–33.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Camelo S, et al. (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164:10–21.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lin HS, et al. (2007) Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br. J. Pharmacol. 150:862–72.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. (2003) Regulation of microglial inflammatory response by histone deacetylase inhibitors. J. Neurochem. 87:407–16.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Suh HS, Choi S, Khattar P, Choi N, Lee SC. (2010) Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J. Neuroimmune Pharmacol. 5:521–32.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Miao F, Gonzalo IG, Lanting L, Natarajan R. (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 279:18091–7.CrossRefGoogle Scholar
  47. 47.
    Shanmugam N, Reddy MA, Guha M, Natarajan R. (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52:1256–64.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Halili MA, et al. (2010) Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS. J. Leukoc. Biol. 87:1103–14.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Leoni F, et al. (2005) The histone deacetylase inhibitor ITF2357 reduces production of proinflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med. 11:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Choi K, Kim YB. (2010) Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J. Intern. Med. 25:119–29.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Greenbaum CJ. (2002) Insulin resistance in type 1 diabetes. Diabetes Metab. Res. Rev. 18:192–200.PubMedCrossRefGoogle Scholar
  52. 52.
    Scheen AJ. (2005) Diabetes mellitus in the elderly: insulin resistance and/or impaired insulin secretion? Diabetes Metab. 31:5S27–25S34.PubMedCrossRefGoogle Scholar
  53. 53.
    Mercado MM, McLenithan JC, Silver KD, Shuldiner AR. (2002) Genetics of insulin resistance. Curr. Diab. Rep. 2:83–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Takigawa-Imamura H, et al. (2003) Stimulation of glucose uptake in muscle cells by prolonged treatment with scriptide, a histone deacetylase inhibitor. Biosci. Biotechnol. Biochem. 67:1499–1506.PubMedCrossRefGoogle Scholar
  55. 55.
    Kaiser C, James SR. (2004) Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol 2:23.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ren JM, et al. (1995) Overexpression of Glut4 protein in muscle increases basal and insulin- stimulated whole body glucose disposal in conscious mice. J. Clin. Invest. 95:429–32.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J. (1996) Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes 45:23–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. (1998) Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice: regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J. Biol. Chem. 273:14285–92.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    McGee SL, et al. (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sparling DP, Griesel BA, Weems J, Olson AL. (2008) GLUT4 enhancer factor (GEF) interacts with MEF2A and HDAC5 to regulate the GLUT4 promoter in adipocytes. J. Biol. Chem. 283:7429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    McKinsey TA, Zhang CL, Olson EN. (2001) Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497–504.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    McKinsey TA, Zhang CL, Olson EN. (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. U. S. A. 97:14400–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    McGee SL, Hargreaves M. (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53:1208–14.PubMedCrossRefGoogle Scholar
  64. 64.
    Michael LF, et al. (2001) Restoration of insulinsensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98:3820–5.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Crunkhorn S, et al. (2007) Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282:15439–50.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bonen A. (2009) PGC-1alpha-induced improvements in skeletal muscle metabolism and insulin sensitivity. Appl. Physiol. Nutr. Metab. 34:307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    McGee SL, Hargreaves M. (2010) Histone modifications and skeletal muscle metabolic gene expression. Clin. Exp. Pharmacol. Physiol. 37:392–6.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Verrotti A, D’Egidio C, Mohn A, Coppola G, Chiarelli F. (2010) Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes. Rev. 12:e32–43.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Verrotti A, et al. (2002) Insulin resistance in epileptic girls who gain weight after therapy with valproic acid. J. Child Neurol. 17:265–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pylvanen V, et al. (2002) Serum insulin and leptin levels in valproate-associated obesity. Epilepsia 43:514–17.PubMedCrossRefGoogle Scholar
  71. 71.
    Pylvanen V, Pakarinen A, Knip M, Isojarvi J. (2006) Characterization of insulin secretion in valproate-treated patients with epilepsy. Epilepsia 47:1460–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Lagger G, et al. (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21:2672–81.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bhaskara S, et al. (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell 30:61–72.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Majdzadeh N, et al. (2008) HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev. Neurobiol. 68:1076–92.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Collombat P, Hecksher-Sorensen J, Serup P, Mansouri A. (2006) Specifying pancreatic endocrine cell fates. Mech. Dev. 123:501–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Chakrabarti SK, Mirmira RG. (2003) Transcription factors direct the development and function of pancreatic beta cells. Trends Endocrinol. Metab. 14:78–84.PubMedCrossRefGoogle Scholar
  77. 77.
    Ohlsson H, Karlsson K, Edlund T. (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12:4251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jonsson J, Carlsson L, Edlund T, Edlund H. (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Offield MF, et al. (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983–95.Google Scholar
  80. 80.
    Gradwohl G, Dierich A, LeMeur M, Guillemot F. (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U. S. A. 97:1607–11.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gu G, Dubauskaite J, Melton DA. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–57.Google Scholar
  82. 82.
    Haumaitre C, Lenoir O, Scharfmann R. (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol. Cell. Biol. 28:6373–83.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. (1997) The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386:399–402.PubMedCrossRefGoogle Scholar
  84. 84.
    Iguchi H, et al. (2007) SOX6 suppresses cyclin D1 promoter activity by interacting with betacatenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation. J. Biol. Chem. 282:19052–61.PubMedCrossRefGoogle Scholar
  85. 85.
    Noel ES, et al. (2008) Organ-specific requirements for Hdac1 in liver and pancreas formation. Dev. Biol. 322:237–50.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Farooq M, et al. (2008) Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev. Biol. 317:336–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Bradner JE, et al. (2010) Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc. Natl. Acad. Sci. U. S. A. 107:12617–22.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Matalon S, et al. (2010) The histone deacetylase inhibitor ITF2357 decreases surface CXCR4 and CCR5 expression on CD4(+) T-cells and monocytes and is superior to valproic acid for latent HIV-1 expression in vitro. J. Acquir. Immune Defic. Syndr. 54:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Goicoa S, Alvarez S, Ricordi C, Inverardi L, Dominguez-Bendala J. (2006) Sodium butyrate activates genes of early pancreatic development in embryonic stem cells. Cloning Stem Cells 8:140–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Lee JH, Hart SR, Skalnik DG. (2004) Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38:32–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Li L, et al. (2008) Combination of GLP-1 and sodium butyrate promote differentiation of pancreatic progenitor cells into insulin-producing cells. Tissue Cell 40:437–45.PubMedCrossRefGoogle Scholar
  92. 92.
    Tayaramma T, Ma B, Rohde M, Mayer H. (2006) Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 24:2858–67.PubMedCrossRefGoogle Scholar
  93. 93.
    Jiang J, et al. (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Weiss MA. (2009) Proinsulin and the genetics of diabetes mellitus. J. Biol. Chem. 284:19159–63.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Aramata S, Han SI, Yasuda K, Kataoka K. (2005) Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochim. Biophys. Acta. 1730:41–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Mosley AL, Corbett JA, Ozcan S. (2004) Glucose regulation of insulin gene expression requires the recruitment of p300 by the beta-cell-specific transcription factor Pdx-1. Mol. Endocrinol. 18:2279–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Mosley AL, Ozcan S. (2003) Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J. Biol. Chem. 278:19660–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Evans-Molina C, et al. (2007) Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes 56:827–35.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Qiu Y, Guo M, Huang S, Stein R. (2002) Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol. Cell. Biol. 22:412–20.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Qiu Y, Sharma A, Stein R. (1998) p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol. Cell. Biol. 18:2957–64.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mosley AL, Ozcan S. (2004) The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose. J. Biol. Chem. 279:54241–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Qiu Y, Guo M, Huang S, Stein R. (2004) Acetylation of the BETA2 transcription factor by p300-associated factor is important in insulin gene expression. J. Biol. Chem. 279:9796–802.PubMedCrossRefGoogle Scholar
  103. 103.
    Han SI, Aramata S, Yasuda K, Kataoka K. (2007) MafA stability in pancreatic beta cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol. Cell. Biol. 27:6593–605.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhao L, Cissell MA, Henderson E, Colbran R, Stein R. (2000) The RIPE3b1 activator of the insulin gene is composed of a protein(s) of approximately 43 kDa, whose DNA binding activity is inhibited by protein phosphatase treatment. J. Biol. Chem. 275:10532–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Guo S, et al. (2009) The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation. J. Biol. Chem. 284:759–65.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rocques N, et al. (2007) GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol. Cell 28:584–97.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Luef GJ, Lechleitner M, Bauer G, Trinka E, Hengster P. (2003) Valproic acid modulates islet cell insulin secretion: a possible mechanism of weight gain in epilepsy patients. Epilepsy Res. 55:53–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Lundh M, et al. (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53:2569–78.CrossRefGoogle Scholar
  109. 109.
    Eizirik DL, Mandrup-Poulsen T. (2001) A choice of death: the signal-transduction of immunemediated beta-cell apoptosis. Diabetologia 44:2115–33.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Maier B, et al. (2010) The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J. Clin. Invest. 120:2156–70.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Oetjen E, et al. (2007) Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells. Diabetologia 50:1678–87.PubMedCrossRefGoogle Scholar
  112. 112.
    Atkinson MA, Gianani R. (2009) The pancreas in human type 1 diabetes: providing new answers to age-old questions. Curr. Opin. Endocrinol. Diabetes Obes. 16:279–85.PubMedCrossRefGoogle Scholar
  113. 113.
    Mandrup-Poulsen T, Bendtzen K, Dinarello CA, Nerup J. (1987) Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic beta-cell cytotoxicity. J. Immunol. 139:4077–82.PubMedGoogle Scholar
  114. 114.
    Pukel C, Baquerizo H, Rabinovitch A. (1988) Destruction of rat islet cell monolayers by cytokines: synergistic interactions of interferon-gamma, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes 37:133–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Cetkovic-Cvrlje M, Eizirik DL. (1994) TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 6:399–406.PubMedCrossRefGoogle Scholar
  116. 116.
    Rabinovitch A, et al. (1994) Human pancreatic islet beta-cell destruction by cytokines is independent of nitric oxide production. J. Clin. Endocrinol. Metab. 79:1058–62.PubMedGoogle Scholar
  117. 117.
    Mandrup-Poulsen T, et al. (1987) Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity. Acta Pathol. Microbiol. Immunol. Scand. C. 95:55–63.PubMedGoogle Scholar
  118. 118.
    Nielsen K, et al. (1999) Beta-cell maturation leads to in vitro sensitivity to cytotoxins. Diabetes 48:2324–32.PubMedCrossRefGoogle Scholar
  119. 119.
    Drage M, et al. (2002) Nondepleting anti-CD4 and soluble interleukin-1 receptor prevent autoimmune destruction of syngeneic islet grafts in diabetic NOD mice. Transplantation 74:611–19.PubMedCrossRefGoogle Scholar
  120. 120.
    Gysemans C, et al. (2003) Prevention of primary non-function of islet xenografts in autoimmune diabetic NOD mice by anti-inflammatory agents. Diabetologia 46:1115–23.PubMedCrossRefGoogle Scholar
  121. 121.
    Sandberg JO, Eizirik DL, Sandler S. (1997) IL-1 receptor antagonist inhibits recurrence of disease after syngeneic pancreatic islet transplantation to spontaneously diabetic non-obese diabetic (NOD) mice. Clin. Exp. Immunol. 108:314–7.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sandberg JO, Eizirik DL, Sandler S, Tracey DE, Andersson A. (1993) Treatment with an interleukin-1 receptor antagonist protein prolongs mouse islet allograft survival. Diabetes 42:1845–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Tellez N, et al. (2007) Adenoviral overproduction of interleukin-1 receptor antagonist increases beta cell replication and mass in syngeneically transplanted islets, and improves metabolic outcome. Diabetologia 50:602–11.PubMedCrossRefGoogle Scholar
  124. 124.
    Amoli MM, Larijani B. (2006) Would blockage of cytokines improve the outcome of pancreatic islet transplantation? Med. Hypotheses 66:816–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Susick L, Veluthakal R, Suresh MV, Hadden T, Kowluru A. (2008) Regulatory roles for histone deacetylation in IL-1beta-induced nitric oxide release in pancreatic beta-cells. J. Cell. Mol. Med. 12:1571–1583.PubMedCrossRefGoogle Scholar
  126. 126.
    Susick L, Senanayake T, Veluthakal R, Woster PM, Kowluru A. (2009) A novel histone deacetylase inhibitor prevents IL-1beta induced metabolic dysfunction in pancreatic beta-cells. J. Cell. Mol. Med. 13:1877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Spinas GA, et al. (1986) Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta. Endocrinol. (Copenh.) 113:551–8.CrossRefGoogle Scholar
  128. 128.
    Sandler S, Andersson A, Hellerstrom C. (1987) Inhibitory effects of interleukin 1 on insulin secretion, insulin biosynthesis, and oxidative metabolism of isolated rat pancreatic islets. Endocrinology 121:1424–31.PubMedCrossRefGoogle Scholar
  129. 129.
    Ohara-Imaizumi M, Cardozo AK, Kikuta T, Eizirik DL, Nagamatsu S. (2004) The cytokine interleukin-1beta reduces the docking and fusion of insulin granules in pancreatic beta-cells, preferentially decreasing the first phase of exocytosis. J. Biol. Chem. 279:41271–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Ortis F, et al. (2010) Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells. Diabetes 59:358–74.PubMedCrossRefGoogle Scholar
  131. 131.
    Ashburner BP, Westerheide SD, Baldwin AS Jr. (2001) The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21:7065–77.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kiernan R, et al. (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278:2758–66.CrossRefGoogle Scholar
  133. 133.
    Gysemans CA, et al. (2005) Disruption of the gamma-interferon signaling pathway at the level of signal transducer and activator of transcription-1 prevents immune destruction of beta-cells. Diabetes 54:2396–403.PubMedCrossRefGoogle Scholar
  134. 134.
    Klampfer L, Huang J, Swaby LA, Augenlicht L. (2004) Requirement of histone deacetylase activity for signaling by STAT1. J. Biol. Chem. 279:30358–68.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Cardozo AK, et al. (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–61.PubMedCrossRefGoogle Scholar
  136. 136.
    Oyadomari S, et al. (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc. Natl. Acad. Sci. U. S. A. 98:10845–50.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Eizirik DL, Cardozo AK, Cnop M. (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29:42–61.PubMedCrossRefGoogle Scholar
  138. 138.
    Eizirik DL, Cnop M. (2010) ER stress in pancreatic beta cells: the thin red line between adaptation and failure. Sci Signal 3:pe7.PubMedCrossRefGoogle Scholar
  139. 139.
    Weber SM, Chambers KT, Bensch KG, Scarim AL, Corbett JA. (2004) PPARgamma ligands induce ER stress in pancreatic beta-cells: ER stress activation results in attenuation of cytokine signaling. Am. J. Physiol. Endocrinol. Metab. 287:E1171–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Mokhtari D, et al. (2009) Increased Hsp70 expression attenuates cytokine-induced cell death in islets of Langerhans from Shb knockout mice. Biochem. Biophys. Res. Commun. 387:553–7.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Johnson CA, White DA, Lavender JS, O’Neill LP, Turner BM. (2002) Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immuno-precipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem. 277:9590–7.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Shi Y, Gerritsma D, Bowes AJ, Capretta A, Werstuck GH. (2007) Induction of GRP78 by valproic acid is dependent upon histone deacetylase inhibition. Bioorg. Med. Chem. Lett. 17:4491–4.PubMedCrossRefGoogle Scholar
  143. 143.
    Laybutt DR, et al. (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–63.PubMedCrossRefGoogle Scholar
  144. 144.
    Akerfeldt MC, et al. (2008) Cytokine-induced beta-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 57:3034–44.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Ohoka N, Hattori T, Kitagawa M, Onozaki K, Hayashi H. (2007) Critical and functional regulation of CHOP (C/EBP homologous protein) through the N-terminal portion. J. Biol. Chem. 282:35687–94.PubMedCrossRefGoogle Scholar
  146. 146.
    Huang CJ, et al. (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–27.CrossRefGoogle Scholar
  147. 147.
    Grunnet LG, et al. (2009) Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells. Diabetes 58:1807–15.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Chang I, et al. (2004) Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha. J. Immunol. 172:7008–14.CrossRefGoogle Scholar
  149. 149.
    McKenzie MD, et al. (2008) Proapoptotic BH3-only protein Bid is essential for death receptor-induced apoptosis of pancreatic beta-cells. Diabetes 57:1284–92.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Allagnat F, et al. (2011) Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to β-cell apoptosis. Cell Death Differ. 18:328–37.PubMedCrossRefGoogle Scholar
  151. 151.
    Gurzov EN, et al. (2010) p53 up-regulated modulator of apoptosis (PUMA) activation contributes to pancreatic beta-cell apoptosis induced by proinflammatory cytokines and endoplasmic reticulum stress. J. Biol. Chem. 285:19910–20.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Gurzov EN, et al. (2009) Signaling by IL-1beta+IFN-gamma and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic beta-cell apoptosis. Cell Death Differ. 16:1539–50.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Rabinovitch A, et al. (1999) Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects beta-cells from cytokine-induced destruction. Diabetes 48:1223–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Holohan C, Szegezdi E, Ritter T, O’Brien T, Samali A. (2008) Cytokine-induced beta-cell apoptosis is NO-dependent, mitochondria-mediated and inhibited by BCL-XL. J. Cell Mol. Med. 12:591–606.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Chen S, Dai Y, Pei XY, Grant S. (2009) Bim up-regulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-xL, and Mcl-1. Mol. Cell. Biol. 29:6149–69.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ruefli AA, et al. (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A. 98:10833–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Sutheesophon K, et al. (2006) Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of Bax, which is enhanced by the proteasome inhibitor bortezomib. Acta. Haematol. 115:78–90.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Cao XX, Mohuiddin I, Ece F, McConkey DJ, Smythe WR. (2001) Histone deacetylase inhibitor downregulation of bcl-xl gene expression leads to apoptotic cell death in mesothelioma. Am. J. Respir. Cell Mol. Biol. 25:562–68.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Dan P Christensen
    • 1
  • Mattias Dahllöf
    • 1
  • Morten Lundh
    • 1
  • Daniel N Rasmussen
    • 1
  • Mette D Nielsen
    • 1
  • Nils Billestrup
    • 2
  • Lars G Grunnet
    • 1
  • Thomas Mandrup-Poulsen
    • 1
    • 3
    • 4
    • 5
  1. 1.Center for Medical Research Methodology, Department of Biomedical Sciences, The Panum InstituteUniversity of CopenhagenCopenhagen NDenmark
  2. 2.Cellular and Metabolic Research, Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department for Diabetes InflammationHagedorn Research InstituteGentofteDenmark
  4. 4.Department of Medicine and SurgeryKarolinska InstituteStockholmSweden
  5. 5.Institute of Biomedical Sciences, the Panum InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations