Advertisement

Molecular Medicine

, Volume 17, Issue 5–6, pp 508–515 | Cite as

Peptide-Based Inhibition of NF-κB Rescues Diaphragm Muscle Contractile Dysfunction in a Murine Model of Duchenne Muscular Dystrophy

  • Jennifer M Peterson
  • William Kline
  • Benjamin D Canan
  • Daniel J Ricca
  • Brian Kaspar
  • Dawn A Delfín
  • Kelly DiRienzo
  • Paula R Clemens
  • Paul D Robbins
  • Albert S Baldwin
  • Pat Flood
  • Pravin Kaumaya
  • Michael Freitas
  • Joe N Kornegay
  • Jerry R Mendell
  • Jill A Rafael-Fortney
  • Denis G Guttridge
  • Paul M L Janssen
Research Article

Abstract

Deterioration of diaphragm function is one of the prominent factors that contributes to the susceptibility of serious respiratory infections and development of respiratory failure in patients with Duchenne Muscular Dystrophy (DMD). The NF-κB signaling pathway has been implicated as a contributing factor of dystrophic pathology, making it a potential therapeutic target. Previously, we demonstrated that pharmacological inhibition of NF-κB via a small NEMO Binding Domain (NBD) peptide was beneficial for reducing pathological features of mdx mice. Now, we stringently test the effectiveness and clinical potential of NBD by treating mdx mice with various formulations of NBD and use diaphragm function as our primary outcome criteria. We found that administering DMSO-soluble NBD rescued 78% of the contractile deficit between mdx and wild-type (WT) diaphragm. Interestingly, synthesis of a GLP NBD peptide as an acetate salt permitted its solubility in water, but as a negative consequence, also greatly attenuated functional efficacy. However, replacing the acetic acid counterion of the NBD peptide with trifluoroacetic acid retained the peptide’s water solubility and significantly restored mdx diaphragm contractile function and improved histopathological indices of disease in both diaphragm and limb muscle. Together, these results support the feasibility of using a mass-produced, water-soluble NBD peptide for clinical use.

Notes

Acknowledgments

This study was supported by a grant from the National Institutes of Health U01 NS058451 (to DC Guttridge, DJ Ricca, PML Janssen, JA Rafael-Fortney, JR Mendell, PR Clemens, PD Robbins, JN Kornegay), as well as support from the Muscular Dystrophy Association (to DC Guttridge and JM Peterson), and a K02 HL08357 award (to PML Janssen). We thank JI Elliott at Yale University for assistance with NBD peptide. The authors take full responsibility for the contents of this paper, which do not represent the views of the Department of Veterans Affairs or the United States Government.

References

  1. 1.
    Blake DJ, Weir A, Newey SE, Davies KE. (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82:291–329.CrossRefGoogle Scholar
  2. 2.
    Acharyya S, et al. (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J. Clin. Invest. 117:889–901.CrossRefGoogle Scholar
  3. 3.
    Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G. (2003) Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology. 60:993–7.CrossRefGoogle Scholar
  4. 4.
    Chen YW, et al. (2005) Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology. 65:826–34.CrossRefGoogle Scholar
  5. 5.
    Messina S, et al. (2006) Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am. J. Pathol. 168:918–26.CrossRefGoogle Scholar
  6. 6.
    Messina S, et al. (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp. Neurol. 198:234–41.CrossRefGoogle Scholar
  7. 7.
    Mendell JR, et al. (1989) Randomized, doubleblind six-month trial of prednisone in Duchenne’s muscular dystrophy. N. Engl. J. Med. 320:1592–7.CrossRefGoogle Scholar
  8. 8.
    De Bosscher K, et al. (1997) Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct interference with transactivation. Proc. Natl. Acad. Sci. U. S. A. 94:13504–9.CrossRefGoogle Scholar
  9. 9.
    De Bosscher K, et al. (2000) Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl. Acad. Sci. U. S. A. 97:3919–24.CrossRefGoogle Scholar
  10. 10.
    Karin M, Ben-Neriah Y. (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18:621–63.CrossRefGoogle Scholar
  11. 11.
    Perkins ND. (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell. Biol. 8:49–62.CrossRefGoogle Scholar
  12. 12.
    Hayden MS, Ghosh S. (2008) Shared principles in NF-kappaB signaling. Cell. 132:344–62.CrossRefGoogle Scholar
  13. 13.
    Baima ET, et al. (2010) Novel insights into the cellular mechanisms of the anti-inflammatory effects of NF-kappaB essential modulator binding domain peptides. J. Biol. Ghem. 285:13498–506.CrossRefGoogle Scholar
  14. 14.
    Akers WS, Cross A, Speth R, Dwoskin LP, Cassis LA. (2000) Renin-angiotensin system and sympathetic nervous system in cardiac pressure-overload hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 279:H2797–806.CrossRefGoogle Scholar
  15. 15.
    Archer JD, Vargas CC, Anderson JE. (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. Faseb. J. 20:738–0.CrossRefGoogle Scholar
  16. 16.
    Barton ER, Morris L, Kawana M, Bish LT, Toursel T. (2005) Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve. 32:751–60.CrossRefGoogle Scholar
  17. 17.
    Carlson CG, Samadi A, Siegel A. (2005) Chronic treatment with agents that stabilize cytosolic IkappaB-alpha enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch. Neurobiol. Dis. 20:719–30.CrossRefGoogle Scholar
  18. 18.
    Hnia K, et al. (2008) L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am. J. Pathol. 172:1509–19.CrossRefGoogle Scholar
  19. 19.
    Pan Y, et al. (2008) Curcumin alleviates dystrophic muscle pathology in mdx mice. Mol. Cells. 25:531–7.PubMedGoogle Scholar
  20. 20.
    Siegel AL, et al. (2009) Treatment with inhibitors of the NF-kappaB pathway improves whole body tension development in the mdx mouse. Neuromuscul. Disord. 19:131–9.CrossRefGoogle Scholar
  21. 21.
    Voisin V, et al. (2005) L-arginine improves dys-trophic phenotype in mdx mice. Neurobiol. Dis. 20:123–30.CrossRefGoogle Scholar
  22. 22.
    Stedman HH, et al. (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature. 352:536–9.CrossRefGoogle Scholar
  23. 23.
    May MJ, et al. (2000) Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science. 289:1550–4.CrossRefGoogle Scholar
  24. 24.
    Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR. (1989) Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ. Res. 65:1441–9.CrossRefGoogle Scholar
  25. 25.
    Chandrasekharan K, et al. (2010) A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci. Transl. Med. 2:42ra54.CrossRefGoogle Scholar
  26. 26.
    Janssen PML, Hiranandani N, Mays TA, Rafael-Fortney JA. (2005) Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice. Am. J. Physiol. Heart Circ. Physiol. 289:H2373–8.CrossRefGoogle Scholar
  27. 27.
    Diaz PT, Brownstein E, Clanton TL. (1994) Effects of N-acetylcysteine on in vitro diaphragm function are temperature dependent. J. Appl. Physiol. 77:2434–9.CrossRefGoogle Scholar
  28. 28.
    Prezant DJ, et al. (1990) Temperature dependence of rat diaphragm muscle contractility and fatigue. J. Appl. Physiol. 69:1740–5.CrossRefGoogle Scholar
  29. 29.
    Rucker M, et al. (2004) Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Development. 131:3007–19.CrossRefGoogle Scholar
  30. 30.
    Acharyya S, et al. (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 8:421–32.CrossRefGoogle Scholar
  31. 31.
    Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr. (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19:5785–99.CrossRefGoogle Scholar
  32. 32.
    Chapoval SP, et al. (2007) Inhibition of NF-kappaB activation reduces the tissue effects of transgenic IL-13. J. Immunol. 179:7030–41.CrossRefGoogle Scholar
  33. 33.
    Dasgupta S, et al. (2004) Antineuroinflammatory effect of NF-kappaB essential modifier-binding domain peptides in the adoptive transfer model of experimental allergic encephalomyelitis. J. Immunol. 173:1344–54.CrossRefGoogle Scholar
  34. 34.
    di Meglio P, Ianaro A, Ghosh S. (2005) Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-kappaB activation. Arthritis Rheum. 52:951–8.CrossRefGoogle Scholar
  35. 35.
    Ghosh A, et al. (2007) Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. U. S. A. 104:18754–9.CrossRefGoogle Scholar
  36. 36.
    Shibata W, et al. (2007) Cutting edge: The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J. Immunol. 179:2681–5.CrossRefGoogle Scholar
  37. 37.
    Tas SW, et al. (2006) Local treatment with the selective IkappaB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res. Ther. 8:R86.CrossRefGoogle Scholar
  38. 38.
    Hayden MS, Ghosh S. (2004) Signaling to NF-kappaB. Genes. Dev. 18:2195–224.CrossRefGoogle Scholar
  39. 39.
    Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y. (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteo-clastogenesis and calvarial inflammatory osteolysis. J. Orthop. Res. 24:1358–65.CrossRefGoogle Scholar
  40. 40.
    Dai S, Hirayama T, Abbas S, Abu-Amer Y. (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J. Biol. Chem. 279:37219–22.CrossRefGoogle Scholar
  41. 41.
    Jimi E, et al. (2004) Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10:617–24.CrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Jennifer M Peterson
    • 1
  • William Kline
    • 1
  • Benjamin D Canan
    • 2
  • Daniel J Ricca
    • 3
  • Brian Kaspar
    • 4
  • Dawn A Delfín
    • 5
  • Kelly DiRienzo
    • 1
  • Paula R Clemens
    • 6
    • 7
  • Paul D Robbins
    • 6
  • Albert S Baldwin
    • 3
  • Pat Flood
    • 3
  • Pravin Kaumaya
    • 8
  • Michael Freitas
    • 1
  • Joe N Kornegay
    • 9
  • Jerry R Mendell
    • 4
  • Jill A Rafael-Fortney
    • 5
  • Denis G Guttridge
    • 1
  • Paul M L Janssen
    • 2
  1. 1.Department of Molecular Virology, Immunology, and Medical GeneticsThe Ohio State University, 910 Biomedical Research TowerColumbusUSA
  2. 2.Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusUSA
  3. 3.University of North Carolina at Chapel Hill and TheraLogics Inc.Research Triangle ParkUSA
  4. 4.Nationwide Children’s Research InstituteColumbusUSA
  5. 5.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  6. 6.Department of NeurologyUniversity of PittsburghPittsburghUSA
  7. 7.Department of Veterans Affairs Medical CenterNeurology ServicePittsburghUSA
  8. 8.Department of MicrobiologyThe Ohio State UniversityColumbusUSA
  9. 9.Department of Pathology and Laboratory MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations