Molecular Medicine

, Volume 17, Issue 1–2, pp 134–143 | Cite as

Selenium and Vitamin E for Prostate Cancer: Post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) Status

  • Mark C. Ledesma
  • Brittney Jung-Hynes
  • Travis L. Schmit
  • Raj Kumar
  • Hasan Mukhtar
  • Nihal Ahmad
Review Article


Various formulations of selenium and vitamin E, both essential human dietary components, have been shown to possess a therapeutic and preventive effect against prostate cancer. Fortuitous results of clinical trials also implied a risk-reduction effect of selenium and vitamin E supplements. The Selenium and Vitamin E Cancer Prevention Trial (SELECT), using oral selenium and vitamin E supplementation in disease-free volunteers, was designed to test a prostate cancer chemoprevention hypothesis. SELECT was terminated early because of both safety concerns and negative data for the formulations and doses given. Here, we review and discuss the studies done before and since the inception of SELECT, as well as the parameters of the trial itself. We believe that there is a lack of appropriate in vivopreclinical studies on selenium and vitamin E despite many promising in vitrostudies on these agents. It seems that the most effective doses and formulations of these agents for prostate cancer chemoprevention have yet to be tested. Also, improved understanding of selenium and vitamin E biology may facilitate the discovery of these doses and formulations.



This work was partially supported by National Institutes of Health grants R01CA114060 and 1R01AR059130 (to N Ahmad) and T32ES007015 (training grant; predoctoral traineeship to TL Schmit).


  1. 1.
    Lippman SM, et al. (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51.CrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. (2009) Cancer statistics, 2009. CA Cancer J. Clin. 59:225–49.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Parkin DM, Bray F, Ferlay J, Pisani P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin. 55:74–108.CrossRefGoogle Scholar
  4. 4.
    Konety BR, Bird VY, Deorah S, Dahmoush L. (2005) Comparison of the incidence of latent prostate cancer detected at autopsy before and after the prostate specific antigen era. J. Urol. 174:1785–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chan JM, Jou RM, Carroll PR. (2004) The relative impact and future burden of prostate cancer in the United States. J. Urol. 172:S13–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wada S. (2009) Chemoprevention of tocotrienols: the mechanism of antiproliferative effects. Forum Nutr. 61:204–16.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kramer BS, et al. (2009) Use of 5alpha-reductase inhibitors for prostate cancer chemoprevention: American Society of Clinical Oncology/American Urological Association 2008 Clinical Practice Guideline. J. Urol. 181:1642–57.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    William WN Jr, Heymach JV, Kim ES, Lippman SM. (2009) Molecular targets for cancer chemoprevention. Nat. Rev. Drug Discov. 8:213–25.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Siddiqui IA, et al. (2009) Introducing nanochemo-prevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res. 69:1712–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. (2006) Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 66:2500–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Adhami VM, Siddiqui IA, Ahmad N, Gupta S, Mukhtar H. (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 64:8715–22.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nihal M, Ahmad N, Mukhtar H, Wood GS. (2005) Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int. J. Cancer. 114:513–21.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. (2001) Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl. Acad. Sci. U. S. A. 98:10350–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Aziz MH, Nihal M, Fu VX, Jarrard DF, Ahmad N. (2006) Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol. Cancer Ther. 5:1335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Aziz MH, Reagan-Shaw S, Wu J, Longley BJ, Ahmad N. (2005) Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease? FASEB J. 19:1193–5.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Reagan-Shaw S, Afaq F, Aziz MH, Ahmad N. (2004) Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. Oncogene 23:5151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Aziz MH, Kumar R, Ahmad N. (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (Review). Int. J. Oncol. 23:17–28.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sarkar F, Li Y, Wang Z, Kong D. (2010) Novel targets for prostate cancer chemoprevention. Endocr. Relat. Cancer 17:R195–212.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sarkar FH. (2010) Current trends in the chemoprevention of cancer. Pharm. Res. 27:945–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sporn MB, Suh N. (2000) Chemoprevention of cancer. Carcinogenesis 21:525–30.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Breslow N, et al. (1977) Latent carcinoma of prostate at autopsy in seven areas: The International Agency for Research on Cancer, Lyons, France. Int. J. Cancer 20:680–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gronberg H. (2003) Prostate cancer epidemiology. Lancet. 361:859–64.CrossRefGoogle Scholar
  23. 23.
    Adlercreutz H. (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Invest. Suppl. 201:3–23.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nam RK, et al. (1999) Prevalence and patterns of the use of complementary therapies among prostate cancer patients: an epidemiological analysis. J. Urol. 161:1521–4.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Evans HM, Bishop KS. (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56:650–1.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jensen SK, Lauridsen C. (2007) Alpha-tocopherol stereoisomers. Vitam. Horm. 76:281–308.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Joffe M, Harris P. (1943) The biological potency of the natural tocopherols and certain derivatives. J. Am. Chem. Soc. 65:925–7.CrossRefGoogle Scholar
  28. 28.
    Burton G, Ingold K. (1981) The antioxidant activity of vitamin E and relative chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 103:6472–7.CrossRefGoogle Scholar
  29. 29.
    Hosomi A, et al. (1997) Affinity for alphatocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 409:105–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee E, et al. (2006) Alpha-tocopheryl succinate, in contrast to alpha-tocopherol and alphatocopheryl acetate, inhibits prostaglandin E2 production in human lung epithelial cells. Carcinogenesis 27:2308–15.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bendich A, Machlin LJ. (1988) Safety of oral intake of vitamin E. Am. J. Clin. Nutr. 48:612–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Galli F, Azzi A. (2010) Present trends in vitamin E research. Biofactors 36:33–42.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ju J, et al. (2010) Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis 31:533–42.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Constantinou C, Papas A, Constantinou AI. (2008) Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 123:739–52.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Barve A, et al. (2009) Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int. J. Cancer 124:1693–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lu G, et al. (2010) A gamma-tocopherol-rich mixture of tocopherols inhibits chemically induced lung tumorigenesis in A/J mice and xenograft tumor growth. Carcinogenesis 31:687–94.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yu W, et al. (2009) Anticancer actions of natural and synthetic vitamin E forms: RRR-alpha-tocopherol blocks the anticancer actions of gamma-tocopherol. Mol. Nutr. Food Res. 53:1573–81.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jiang Q, Moreland M, Ames BN, Yin X. (2009) A combination of aspirin and gamma-tocopherol is superior to that of aspirin and alpha-tocopherol in anti-inflammatory action and attenuation of aspirin-induced adverse effects. J. Nutr. Biochem. 20:894–900.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cooney RV, et al. (1993) Gamma-tocopherol detoxification of nitrogen dioxide: superiority to alpha-tocopherol. Proc. Natl. Acad. Sci. U. S. A. 90:1771–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Christen S, Woodall AA, Shigenaga MK, South-well-Keely PT, Duncan MW, Ames BN. (1997) Gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc. Natl. Acad. Sci. U. S. A. 94:3217–22.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gunawardena K, Murray DK, Meikle AW. (2000) Vitamin E and other antioxidants inhibit human prostate cancer cells through apoptosis. Prostate 44:287–95.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ni J, Chen M, Zhang Y, Li R, Huang J, Yeh S. (2003) Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochem. Biophys. Res. Commun. 300:357–63.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chang E, et al. (2007) Alpha-vitamin E derivative, RRR-alpha-tocopheryloxybutyric acid inhibits the proliferation of prostate cancer cells. Asian J. Androl. 9:31–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhang Y, et al. (2002) Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc. Natl. Acad. Sci. U. S. A. 99:7408–13.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Israel K, Yu W, Sanders BG, Kline K. (2000) Vitamin E succinate induces apoptosis in human prostate cancer cells: role for Fas in vitamin E succinate-triggered apoptosis. Nutr. Cancer 36:90–100.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Crispen PL, et al. (2007) Vitamin E succinate inhibits NF-kappaB and prevents the development of a metastatic phenotype in prostate cancer cells: implications for chemoprevention. Prostate. 67:582–90.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Jia L, et al. (2008) Critical roles for JNK, c-Jun, and Fas/FasL-signaling in vitamin E analog-induced apoptosis in human prostate cancer cells. Prostate 68:427–41.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Yin Y, et al. (2007) The therapeutic and preventive effect of RRR-alpha-vitamin E succinate on prostate cancer via induction of insulin-like growth factor binding protein-3. Clin. Cancer Res. 13:2271–80.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Shiau CW, et al. (2006) Alpha-tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J. Biol. Chem. 281:11819–25.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zu K, Ip C. (2003) Synergy between selenium and vitamin E in apoptosis induction is associated with activation of distinctive initiator caspases in human prostate cancer cells. Cancer Res. 63:6988–95.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ni J, et al. (2009) In vitro and in vivo anticancer effects of the novel vitamin E ether analogue RRR-alpha-tocopheryloxybutyl sulfonic acid in prostate cancer. Clin. Cancer Res. 15:898–906.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Galli F, et al. (2004) The effect of alpha- and gamma-tocopherol and their carboxyethyl hydroxychroman metabolites on prostate cancer cell proliferation. Arch. Biochem. Biophys. 423:97–102.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jensen SK, Engberg RM, Hedemann MS. (1999) All-rac-alpha-tocopherol acetate is a better vitamin E source than all-rac-alpha-tocopherol succinate for broilers. J. Nutr. 129:1355–60.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fleshner N, Fair WR, Huryk R, Heston WD. (1999) Vitamin E inhibits the high-fat diet promoted growth of established human prostate LNCaP tumors in nude mice. J. Urol. 161:1651–4.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Basu A, Grossie B, Bennett M, Mills N, Imrhan V. (2007) Alpha-tocopheryl succinate (alpha-TOS) modulates human prostate LNCaP xenograft growth and gene expression in BALB/c nude mice fed two levels of dietary soybean oil. Eur. J. Nutr. 46:34–43.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Takahashi S, et al. (2009) Suppression of prostate cancer in a transgenic rat model via gamma-tocopherol activation of caspase signaling. Prostate 69:644–51.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Heinonen OP, et al. (1998) Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J. Natl. Cancer Inst. 90:440–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Weinstein SJ, et al. (2007) Serum and dietary vitamin E in relation to prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 16:1253–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Peters U, et al. (2008) Vitamin E and selenium supplementation and risk of prostate cancer in the Vitamins and Lifestyle (VITAL) study cohort. Cancer Causes Control 19:75–87.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chan JM, et al. (1999) Supplemental vitamin E intake and prostate cancer risk in a large cohort of men in the United States. Cancer Epidemiol. Biomarkers Prev. 8:893–9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rodriguez C, et al. (2004) Vitamin E supplements and risk of prostate cancer in U.S. men. Cancer Epidemiol. Biomarkers Prev. 13:378–82.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gann PH, et al. (1999) Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res. 59:1225–30.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Schwarz K, Foltz CM. (1999) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. 1951. Nutrition 15:255.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kryukov GV, et al. (2003) Characterization of mammalian selenoproteomes. Science 300:1439–43.CrossRefGoogle Scholar
  65. 65.
    Bialostosky K, Wright JD, Kennedy-Stephenson J, McDowell M, Johnson CL. (2002) Dietary intake of macronutrients, micronutrients, and other dietary constituents: United States 1988–94. Vital Health Stat 11:1–158.Google Scholar
  66. 66.
    Shamberger RJ, Frost DV. (1969) Possible protective effect of selenium against human cancer. Can. Med. Assoc. J. 100:682.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Ip C. (1998) Lessons from basic research in selenium and cancer prevention. J. Nutr. 128:1845–54.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Webber MM, Perez-Ripoll EA, James GT. (1985) Inhibitory effects of selenium on the growth of DU-145 human prostate carcinoma cells in vitro. Biochem. Biophys. Res. Commun. 130:603–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zhong W, Oberley TD. (2001) Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res. 61:7071–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Thompson HJ, et al. (1994) Comparison of the effects of an organic and an inorganic form of selenium on a mammary carcinoma cell line. Carcinogenesis 15:183–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Redman C, et al. (1998) Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett. 125:103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sinha R, Medina D. (1997) Inhibition of cdk2 kinase activity by methylselenocysteine in synchronized mouse mammary epithelial tumor cells. Carcinogenesis 18:1541–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Menter DG, Sabichi AL, Lippman SM. (2000) Selenium effects on prostate cell growth. Cancer Epidemiol. Biomarkers Prev. 9:1171–82.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Spallholz JE, Palace VP, Reid TW. (2004) Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: implications for the nutritional carcinosta-tic activity of selenoamino acids. Biochem. Pharmacol. 67:547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zhao R, Domann FE, Zhong W. (2006) Apoptosis induced by selenomethionine and methioninase is superoxide mediated and p53 dependent in human prostate cancer cells. Mol. Cancer Ther. 5:3275–84.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yamaguchi K, et al. (2005) Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Oncogene 24:5868–77.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Christensen MJ, Nartey ET, Hada AL, Legg RL, Barzee BR. (2007) High selenium reduces NF-kappaB-regulated gene expression in uninduced human prostate cancer cells. Nutr. Cancer. 58:197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–97.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ip C, Lisk DJ. (1994) Enrichment of selenium in allium vegetables for cancer prevention. Carcinogenesis 15:1881–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Corcoran NM, Najdovska M, Costello AJ. (2004) Inorganic selenium retards progression of experimental hormone refractory prostate cancer. J. Urol. 171:907–10.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lee SO, et al. (2006) Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Prostate 66:1070–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Li GX, et al. (2008) Superior in vivo inhibitory efficacy of methylseleninic acid against human prostate cancer over selenomethionine or selenite. Carcinogenesis 29:1005–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wang L, et al. (2009) Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev. Res. (Phila.) 2:484–95.CrossRefGoogle Scholar
  84. 84.
    Sabichi AL, et al. (2006) Selenium accumulation in prostate tissue during a randomized, controlled short-term trial of l-selenomethionine: a Southwest Oncology Group Study. Clin. Cancer Res. 12:2178–84.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Blot WJ, et al. (1993) Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J. Natl. Cancer Inst. 85:1483–92.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Li JY, et al. (1993) Nutrition intervention trials in Linxian, China: multiple vitamin/mineral supplementation, cancer incidence, and disease-specific mortality among adults with esophageal dysplasia. J. Natl. Cancer Inst. 85:1492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Clark LC, et al. (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276:1957–63.CrossRefGoogle Scholar
  88. 88.
    Clark LC, et al. (1998) Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br. J. Urol. 81:730–4.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Duffield-Lillico AJ, et al. (2003) Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int. 91:608–12.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Downing SR, Jackson P, Russell PJ. (2001) Mutations within the tumour suppressor gene p53 are not confined to a late event in prostate cancer progression: a review of the evidence. Urol. Oncol. 6:103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lanfear J, Fleming J, Wu L, Webster G, Harrison PR. (1994) The selenium metabolite selenodiglutathione induces p53 and apoptosis: relevance to the chemopreventive effects of selenium? Carcinogenesis 15:1387–92.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jiang C, Hu H, Malewicz B, Wang Z, Lu J. (2004) Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells. Mol. Cancer Ther. 3:877–84.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Kuehnelt D, et al. (2005) Selenium metabolites in human urine after ingestion of selenite, L-selenomethionine, or DL-selenomethionine: a quantitative case study by HPLC/ICPMS. Anal. Bioanal. Chem. 383:235–46.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Combs GF Jr, Scott ML. (1977) Nutritional interrelationships of vitamin E and selenium. Bioscience 27:467–73.CrossRefGoogle Scholar
  95. 95.
    Combs GF Jr, Scott ML. (1974) Dietary requirements for vitamin E and selenium measured at the cellular level in the chick. J. Nutr. 104:1292–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Diplock AT. (1978) The biological function of vitamin E and the nature of the interaction of the vitamin with selenium. World Rev. Nutr. Diet. 31:178–83.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Reagan-Shaw S, Nihal M, Ahsan H, Mukhtar H, Ahmad N. (2008) Combination of vitamin E and selenium causes an induction of apoptosis of human prostate cancer cells by enhancing Bax/Bcl-2 ratio. Prostate 68:1624–34.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tsavachidou D, et al. (2009) Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J. Natl. Cancer Inst. 101:306–20.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Venkateswaran V, Fleshner NE, Sugar LM, Klotz LH. (2004) Antioxidants block prostate cancer in lady transgenic mice. Cancer Res. 64:5891–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Venkateswaran V, Klotz LH, Ramani M, Sugar LM, Jacob LE, Nam RK, Fleshner NE. (2009) A combination of micronutrients is beneficial in reducing the incidence of prostate cancer and increasing survival in the Lady transgenic model. Cancer Prev. Res. (Phila.) 2:473–83.CrossRefGoogle Scholar
  101. 101.
    Cervi D, et al. (2010) Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, platelet factor-4. BMC Cancer 10:258.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lippman SM, et al. (2005) Designing the selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Natl. Cancer Inst. 97:94–102.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Taylor PR, Albanes D. (1998) Selenium, vitamin E, and prostate cancer: ready for prime time? J. Natl. Cancer Inst. 90:1184–5.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Moyad MA. (2002) Selenium and vitamin E supplements for prostate cancer: evidence or embellishment? Urology 59:9–19.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bird SM, Block E, Denoyer E. (1997) Highperformance liquid chromatography of selenoamino acids and organo selenium compounds: speciation by inductively coupled plasma mass spectrometry. J. Chromatogr. A. 789:349–59.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Yoshizawa K, et al. (1998) Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J. Natl. Cancer Inst. 90:1219–24.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hatfield DL, Gladyshev VN. (2009) The Outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology. Mol. Interv. 9:18–21.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Allen NE, Morris JS, Ngwenyama RA, Key TJ. (2004) A case-control study of selenium in nails and prostate cancer risk in British men. Br. J. Cancer. 90:1392–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Peters U, Takata Y. (2008) Selenium and the prevention of prostate and colorectal cancer. Mol. Nutr. Food Res. 52:1261–72.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Handelman GJ, Packer L, Cross CE. (1996) Destruction of tocopherols, carotenoids, and retinol in human plasma by cigarette smoke. Am. J. Clin. Nutr. 63:559–65.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kirsh VA, et al. (2006) Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. J. Natl. Cancer Inst. 98:245–54.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Mark C. Ledesma
    • 1
  • Brittney Jung-Hynes
    • 1
    • 2
  • Travis L. Schmit
    • 1
    • 2
  • Raj Kumar
    • 3
  • Hasan Mukhtar
    • 1
    • 2
    • 4
  • Nihal Ahmad
    • 1
    • 2
    • 4
  1. 1.Department of DermatologyUniversity of WisconsinMadisonUSA
  2. 2.Molecular and Environmental Toxicology CenterUniversity of WisconsinMadisonUSA
  3. 3.Department of Basic SciencesThe Commonwealth Medical CollegeScrantonUSA
  4. 4.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations