Advertisement

Molecular Medicine

, Volume 17, Issue 11–12, pp 1397–1410 | Cite as

Potential Role of Leptin, Adiponectin and Three Novel Adipokines—Visfatin, Chemerin and Vaspin—in Chronic Hepatitis

  • Michał Kukla
  • Włodzimierz Mazur
  • Rafał J. Bułdak
  • Krystyna Żwirska-Korczala
Review Article

Abstract

Chronic hepatitis C (CHC) is generally a slowly progressive disease, but some factors associated with rapid progression have been identified. Steatosis, independently of its metabolic or viral origin, leads to liver injury and fibrosis. It is suggested that hepatitis C virus may contribute to a wide spectrum of metabolic disturbances—namely, steatosis, insulin resistance, increased prevalence of impaired glucose tolerance, type 2 diabetes mellitus and lipid metabolism abnormalities. Adipokines, which are produced mainly by adipose tissue, may influence the inflammatory response and insulin sensitivity and contribute to the development of metabolic abnormalities in CHC and also regulate fibrogenesis and angiogenesis. Visfatin was described as an adipokine with immunomodulating and proinflammatory properties that promotes B-cell maturation and enhances activation of leukocytes, synthesis of adhesion molecules and production of proinflammatory cytokines. Visfatin exerts insulin-mimetic effects, decreases plasma glucose levels and regulates cell energy balance. Chemerin stimulates chemotaxis of dendritic cells, macrophages and natural killer (NK) cells toward the site of inflammation. On the other hand, it inhibits synthesis of proinflammatory mediators and enhances adiponectin production, influences adipocyte differentiation and maturation and regulates glucose uptake in adipocytes. Vaspin expression in human adipose tissue seems to be a compensatory mechanism associated with obesity and insulin resistance. Vaspin suppresses leptin, tumor necrosis factor (TNF)-α and resistin expression. Leptin protects against liver steatosis but accelerates fibrosis progression and exacerbates the inflammatory process. In contrast, adiponectin exerts a hepatoprotective effect. In this report, data indicating a possible role of these adipokines in the pathogenesis of chronic hepatitis are summarized.

Notes

Acknowledgments

The authors thank Professor Fabio Marra for critical reading of the manuscript.

References

  1. 1.
    Bernsmeier C, Heim MH. (2009) Insulin resistance in chronic hepatitis C: mechanisms and clinical relevance. Swiss Med. Wkly. 139:678–84.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hui JM, et al. (2003) Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression. Gastroenterology 125, 1695–704.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Fartoux L, et al. (2005) Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut 54:1003–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Romero-Gomez M, et al. (2005) Insulin resistance impairs sustained response rate to peginterferon plus ribiavirin in chronic hepatitis C patients. Gastroenterology. 128:636–41.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lecube A, et al. (2007) Glucose abnormalities are an independent risk factor for non-response to antiviral treatment in chronic hepatitis C. Am. J. Gastroenterol. 102:2189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Veldt BJ, et al. (2008) Increased risk of hepatocellular carcinoma among patients with hepatitis C cirrhosis and diabetes mellitus. Hepatology. 47:1856–62.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Negro F, Sanyal AJ. (2009) Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int. 29 Suppl 2:26–37.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Matos C, et al. (2006) Steatosis in chronic hepatitis C: relationship to the virus and host risk factors. J. Gastroenterol. Hepatol. 21:1236–39.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Asselah T, Rubbia-Brandt L, Marcellin P, Negro F. (2006) Steatosis in chronic hepatitis C: why does it really matter? Gut 55:123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Rabe K, et al. (2008) Adipokines and insulin resistance. Mol. Med. 14:741–51.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Marra F, Bertolani C. (2009) Adipokines in liver diseases. Hepatology. 50:957–69.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bertolani C, Marra F. (2008) The role of adipokines in liver fibrosis. Pathophysiology. 15:91–101.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Zwirska-Korczala K, et al. (2005) Leptin, neopterin and hepatocyte growth factor as markers of fibrosis and inflammatory activity in chronic hepatitis C. Exp. Clin. Hep. 1:OR60–5.Google Scholar
  14. 14.
    Shoelson SE, Lee J, Goldfine AB. (2006) Inflammation and insulin resistance. J. Clin. Invest. 116:1793–801.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Greenberg AS, Obin MS. (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83:461S–465S.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kukla M, et al. (2007) Liver tissue alterations in morbidly obese patients undergoing bariatric surgery. Exp. Clin. Hep. 3:OR12–8.Google Scholar
  17. 17.
    Rector RS, Thyfault JP, Wei Y, Ibdah JA. (2008) Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J. Gastroenterol. 14:185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Adams LA, Angulo P. (2005) Recent concepts in non-alcoholic fatty liver disease. Diabet. Med. 22:1129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gabriel A, Kukla M, Ziolkowski A. (2008) Histopathological features and current scoring systems for semiquantitative assessment of nonalcoholic fatty liver disease. Exp. Clin. Hep. 4:RA48–54.Google Scholar
  20. 20.
    Naveau S, et al. (1997) Excess weight is a risk factor for alcoholic liver disease. Hepatology. 25:108–11.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hourigan LF, et al. (1999) Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology. 29:1215–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wolk A, et al. (2001) A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control. 12:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kamada Y, Takehara T, Hayashi N. (2008) Adipocytokines and liver disease. J. Gastroenterol. 43:811–22.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Luk T, Malam Z, Marshall JC. (2008) Pre-B cell colony-enhancing factor (PBEF)/visfatin: visfatin novel mediator of innate immunity. J. Leukoc. Biol. 83:804–16.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Moschen AR, et al. (2007) Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. 178:1748–58.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Samal B, et al. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14:1431–37.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jia SH, et al. (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J. Clin. Invest. 113:1318–27.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Adya R, et al. (2008) Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc. Res. 78:356–65.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Fukuhara A, et al. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 307:426–30.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Arner P. (2006) Visfatin: a true or false trail to type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 91:28–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Lim SY, et al. (2008) The novel adipocytokine exerts direct cardioprotective effects. J. Cell. Mod. Med. 12:1395–403.CrossRefGoogle Scholar
  32. 32.
    Jarrar MH, et al. (2008) Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol. Ther. 27:412–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Berndt J, et al. (2005) Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes. 54:2911–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Filippatos TD, Deremezis CS, Kiortsis DN, Tselepis AD, Elisaf MS. (2007) Increased plasma levels of visfatin/pre-B cell colony-enhancing factor in obese and overweight patients with metabolic syndrome. J. Endocrinol. Invest. 30:323–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Pagano C, et al. (2006) Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J. Clin. Endocrinol. Metab. 91:3165–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen MP, et al. (2006) Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 91:295–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Chang YC, Chang TJ, Lee WJ, Chuang LM. (2010) The relationship of visfatin/pre-B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance and plasma lipids. Metab. Clin. Exp. 59:93–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Kukla M, et al. (2010) Serum visfatin in chronic hepatitis C. J. Viral. Hepat. 17:254–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Zwirska-Korczala K, et al. (2008) Postprandial response of ghrelin and PYY and indices of low-grade chronic inflammation in lean young women with polycystic ovary syndrome. J. Phys-iol. Pharmacol. 59 Suppl 2:161–7PubMedGoogle Scholar
  40. 40.
    Wang T, et al. (2006) Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. 13:661–2.PubMedCrossRefGoogle Scholar
  41. 41.
    Baranova A, et al. (2010) Association of serum adipocytokines with hepatic steatosis and fibrosis in patients with chronic hepatitis C. Digestion. 83:32–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Aller R, et al. (2009) Influence of visfatin on histopathological changes of non-alcoholic fatty liver disease. Dig. Dis. Sci. 54:1772–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Gaddipati R, et al. (2010) Visceral adipose tissue visfatin in nonalcoholic fatty liver disease. Ann. Hepatol. 9:266–70.PubMedGoogle Scholar
  44. 44.
    Ramadori G, Christ B. (1999) Cytokines and the hepatic acute-phase response. Semin. Liver. Dis. 19:141–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Selzner N, et al. (2002) Cold ischemia decreases liver regeneration after partial liver transplantation in the rat: a TNF-α / IL-6-dependent mechanism. Hepatology. 36:812–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Dahl TB, et al. (2010) Intracellular nicotinamide phosphoribosylotransferase protects against hepatocyte apoptosis and is down-regulated in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 95:3039–47.PubMedCrossRefGoogle Scholar
  47. 47.
    Kukla M, et al. (2008) Serum levels of sICAM-1, TNFα, sTNF-R1, and sTNF-R2 in patients with chronic hepatitis C treated with pegylated interferon a and ribavirin. Exp. Clin. Hep. 4:OR12–20.Google Scholar
  48. 48.
    Jonsson JR, et al. (2008) Obesity and steatosis influence serum and hepatic inflammatory markers in chronic hepatitis C. Hepatology. 48:80–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Ding WX, Yin XM. (2004) Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J. Cell. Mol. Med. 8:445–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Wolf D, et al. (2001) TNF-alpha-induced expression of adhesion molecules in the liver is under the control of TNFR-1-relevance for concanavalin A-induced hepatitis. J. Immunol. 166:1300–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim SR, et al. (2008) Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim. Biophys. Acta. 1783:886–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Kukla M, et al. (2009) sPECAM-1 and sVCAM-1: role in pathogenesis and diagnosis of chronic hepatitis C and association with response to antiviral therapy. Ther. Adv. Gastroenterol. 2:79–90.CrossRefGoogle Scholar
  53. 53.
    Kukla M, et al. (2009) Angiogenesis in chronic viral hepatitis. Gastroenterol. Pol. 16:304–9.Google Scholar
  54. 54.
    Fernandez M, et al. (2009) Angiogenesis in liver disease. J. Hepatol. 50:604–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Gabriel A, et al. (2009) Angiogenesis in chronic hepatitis C is associated with inflammatory activity grade and fibrosis stage. Pathol. Res. Pract. 205:758–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Amarapurkar AD, et al. (2007) Angiogenesis in chronic liver disease. Ann. Hepatol. 6:170–3.PubMedGoogle Scholar
  57. 57.
    Salcedo X, et al. (2005) The potential of angiogenesis soluble markers in chronic hepatitis C. Hepatology. 42:696–701.PubMedCrossRefGoogle Scholar
  58. 58.
    Jackson C. (2002) Matrix metalloproteinases and angiogenesis. Curr. Opin. Nephrol. Hypertens. 11:295–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Brensmeier C, et al. (2008) Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J. Hepatol. 49:429–40.CrossRefGoogle Scholar
  60. 60.
    Aytug S, et al. (2003) Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology. 38:1384–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Sun Q, et al. (2009) Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann. Med. 41:311–20.PubMedCrossRefGoogle Scholar
  62. 62.
    Catalan V, et al. (2011) Association of increased visfatin/PBEF/Nampt circulating concentrations and gene expressions levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. Nutr. Metab. Cardiovasc. Dis. 21:245–53.PubMedGoogle Scholar
  63. 63.
    Hara N, et al. (2007) Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells. J. Biol. Chem. 282:24574–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Deng XQ, Chen LL, Li NX. (2007) The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 27:708–15.PubMedCrossRefGoogle Scholar
  65. 65.
    de Boer JF, Bahr MJ, Böker KH, Manns MP, Tietge UJ. (2009) Plasma levels of PBEF/Nampt/visfatin are decreased in patients with liver cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G196–201.PubMedCrossRefGoogle Scholar
  66. 66.
    Ratziu V, et al. Fibrogenic impact of high serum glucose in chronic hepatitis C. J. Hepatol. 39:1049–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Zabel BA, Allen SJ, Kulig P. (2005) Chemerin activation by serine proteases of the coagulation fibrinolytic, and inflammatory cascades. J. Biol. Chem. 280:34661–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Bozaoglu K, et al. (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 148:4687–94.PubMedCrossRefGoogle Scholar
  69. 69.
    Wittamer V, et al. (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198:977–85.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Moretta A, et al. (2008) NK cells at the interface between innate and adaptive immunity. Cell. Death Differ. 15:226–33.PubMedCrossRefGoogle Scholar
  71. 71.
    Yoshimura T, Oppenheim JJ. (2008) Chemerin reveals a chimeric nature. J Exp. Med. 205:2187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Cash JL, et al. (2008) Synthetic chemerin-derived peptides suppress inflammation through ChemR23. J Exp. Med. 205:767–75.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Gorlaski L. (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282:28175–88.CrossRefGoogle Scholar
  74. 74.
    Takahasi M, et al. (2008) Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 582:573–8.CrossRefGoogle Scholar
  75. 75.
    Stejskal D, et al. (2008) Chemerin is an independent marker of the metabolic syndrome in a Caucasian population: a pilot study. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 152:217–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Kukla M, et al. (2010) Serum chemerin and vaspin in nonalcoholic fatty liver disease. Scan. J. Gastroenterol. 45:235–42.CrossRefGoogle Scholar
  77. 77.
    Kukla M, et al. (2010) Chemerin, vaspin and insulin resistance in chronic hepatitis C. J. Viral. Hepat. 17:661–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Sell H, et al. (2009) Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes. 58:2731–40.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Weigert J, et al. (2010) Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. (Oxf). 72:342–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Bozaoglu K, et al. (2009) Chemerin is associated with metabolic syndrome phenotypes in Mexican-American population. J. Clin. Endocrinol. Metab. 98:3085–9.CrossRefGoogle Scholar
  81. 81.
    Kaur J, et al. (2010) Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem. Biophys. Res. Commun. 391:1762–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Klöting N, et al. (2006) Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem. Biophys. Res. Commun. 339:430–6.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wada J. (2008) Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin. Investig. Drugs. 17:327–33.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Narita R, et al. (2004) Insulin resistance and insulin secretion in chronic hepatitis C virus infection. J. Hepatol. 41:132–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Aktas B, et al. (2011) Serum levels of vaspin, obestatin, and apelin-36 in patients with nonalcoholic fatty liver disease. Metabolism. 60:544–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Youn BS, et al. (2008) Serum vaspin concentration in human obesity and type 2 diabetes. Diabetes. 57:372–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Seeger J, et al. (2008) Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J. Clin. Endocrinol. Metab. 93:247–51.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Weisberg SP, et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796–808.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Friedman JM, Halaas JL. (1998) Leptin and the regulation of body weight in mammals. Nature. 395:763–70.CrossRefGoogle Scholar
  90. 90.
    Myers MG, Cowley MA, Munzberg H. (2008) Mechanisms of leptin action and leptin resistance. Ann. Rev. Physiol. 70:537–56.CrossRefGoogle Scholar
  91. 91.
    Kakuma T, et al. (2000) Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proc. Natl. Acad. Sci. U. S. A. 97:8536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Faggioni R, et al. (2000) Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicology: role of tumor necrosis factor alpha and IL-18. Proc. Natl. Acad. Sci. U. S. A. 97:2367–72.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. (1997) Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc. Natl. Acad. Sci. U. S. A. 94:2557–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Aleffi S, et al. (2005) Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 42:1339–48.CrossRefGoogle Scholar
  95. 95.
    Potter JJ, Womack L, Mezey E, Anania FA. (1998) Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem. Biophys. Res. Commun. 244:178–82.CrossRefGoogle Scholar
  96. 96.
    Wang J, Brymora J, George J. (2008) Role of adipokines in liver injury and fibrosis. Expert. Rev. Gastroenterol. Hepatol. 2:47–57.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ikejima K, et al. (2001) Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology. 34:288–97.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Leclerq IA, et al. (2002) Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 37:206–13.CrossRefGoogle Scholar
  99. 99.
    Ikejima K, et al. (2002) Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 122:1399–410.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Bertolani C, Marra F. (2010) Role of adipocytokines in hepatic fibrosis. Curr. Pharm. Des. 16:1929–40.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Marra F. (2007) Leptin and liver tissue repair: do rodent models provide the answers? J. Hepatol. 46:12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Cao Q, Mak KM, Ren C, Lieber CS. (2004) Leptin stimulates tissue inhibitor of metalloptoteinase-1 tissue inhibitor in human hepatic stellate cells: respective roles of the JAK/STAT and Jak-mediated H2O2-dependent MAPK pathways. J. Biol. Chem. 279:4292–304.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Cao Q, Mak KM, Lieber CS. (2007) Leptin repress matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. J. Hepatol. 46:124–33.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Saxena NK, et al. (2004) Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J. 18:1612–4.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ding X, et al. (2005) The roles of leptin and adiponectin: a novel paradigm in adipocytikine regulation of liver fibrosis and stellate cell biology. Am. J. Pathol. 166:1655–69.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Anagnostoulis S, et al. (2008) Human leptin induces angiogenesis in vivo. Cytokine 42:353–57.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Rahmouni K, Haynes WG. (2005) Endothelial effects of leptin: implications in health and diseases. Curr. Diab. Rep. 5:260–6.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kitade M, et al. (2006) Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology. 44:983–91.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Saxena NK, et al. (2007) Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 67:2497–507.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Tiftikci A, et al. (2009) Serum levels of adipokines in patients with chronic HCV infection: relationship with steatosis and fibrosis. Arch. Med. Res. 40:294–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Giannini E, et al. (2000) Leptin has no role in determining severity of steatosis and fibrosis in patients with chronic hepatitis C. Am. J. Gastroenterol. 95:3211–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Testa R, et al. (2000) Serum leptin levels in patients with viral chronic hepatitis or liver cirrhosis. J. Hepatol. 33:33–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Piche T, et al. (2004) The severity of liver fibrosis is associated with high leptin levels in chronic hepatitis C. J. Viral. Hepat. 11:91–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Crespo J, et al. (2002) Plasma leptin and TNF-alpha levels in chronic hepatitis C patients and their relationship to hepatic fibrosis. Dig. Dis. Sci. 47:1604–1.PubMedCrossRefGoogle Scholar
  115. 115.
    Myers RP, Messous D, Poynard T, Imbert-Bismut F. (2007) Association between leptin, metabolic factors and liver histology in patients with chronic hepatitis C. Can. J. Gastroenterol. 21:289–94.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bolukbas FF, et al. (2004) Child-Pugh classification dependent alterations in serum leptin among cirrhotic patients: a case controlled study. BMC Gastroenterol. 23:4–23.Google Scholar
  117. 117.
    Manolakopoulos S, et al. (2007) An assessment of serum leptin levels in patients with chronic viral hepatitis: a prospective study. BMC Gastroenterol. 7:17.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Myers RP, Messous D, Poynard T, Imbert-Bismut F. (2007) Association between leptin, metabolic factors and liver histology in patients with chronic hepatitis C. Can. J. Gastroenterol. 21:289–94.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Gordon A, McLean CA, Pedersen JS, Bailey MJ, Roberts SK. (2005) Hepatic steatosis in chronic hepatitis B and C: predictors, distribution and effect on fibrosis. J. Hepatol. 43:38–44.PubMedCrossRefGoogle Scholar
  120. 120.
    Kadowaki T, et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116:1784–92.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Pittas AG, Joseph NA, Greenberg AS. (2004) Adipokines and insulin resistance. J. Clin. Endocrinol. Metab. 89:447–52.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Xu A, et al. (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver disease. J. Clin. Inves. 112:91–100.CrossRefGoogle Scholar
  123. 123.
    Bastard JP, et al. (2006) Recent advances in the relationship between obesity, inflammation and insulin resistance. Eur. Cytokine Netw. 17:4–12.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Purohit V, Gao B, Song BJ. (2009) Molecular mechanisms of alcoholic fatty liver. Alcohol Clin. Exp. Res. 33:191–205.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Xu A, et al. (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112:91–100.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Masaki T, et al. (2004) Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology. 40:177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Kim JY, et al. (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117:2621–37.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Andreelli F, et al. (2006) Liver adenosine monophosphate-activated kinase-alpha2 catatylic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology. 147:2432–41.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Tilg H, Moschen AR. (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6:772–83.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Sennello JA, et al. (2005) Regulation of T-cell-mediated hepatic inflammation by adiponectin and leptin. Endocrinology. 146:2157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Wedemeyer I, et al. (2009) Adiponectin inhibits steatotic CD95/Fas up-regulation by hepatocytes: therapeutic implications for hepatitis C. J. Hepatol. 50:140–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Testa R, et al. (2000) Serum leptin levels in patients with viral chronic hepatitis or liver cirrhosis. J. Hepatol. 33:33–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Handy JA, et al. (2010) Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J. Cell Biochem. 110:1195–207.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Liu CJ, et al. (2005) Serum adiponectin correlates with viral characteristics but not histologic features in patients with chronic hepatitis C. J. Hepatol. 43:235–42.PubMedCrossRefGoogle Scholar
  135. 135.
    Sato S, et al. (2005) Serum adiponectin concentration in patients with hepatitis C virus. J. Clin. Gastroenterol. 39:744–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Grigorescu M, et al. (2008) Metabolic syndrome, insulin resistance and adiponectin levels in chronic hepatitis C. J. Gastrointestin. Liver Dis. 17:147–54.PubMedGoogle Scholar
  137. 137.
    Petit JM, et al. (2005) Decreased plasma adiponectin concentration are closely related to steatosis in hepatitis C virus infected patients. J. Clin. Endocrinol. Metab. 90:2240–3.PubMedCrossRefGoogle Scholar
  138. 138.
    Cua IH, et al. (2007) Insulin resistance and liver injury in hepatitis C is not associated with virus-specific changes in adipocytokines. Hepatology. 46:66–73.PubMedCrossRefGoogle Scholar
  139. 139.
    Jonsson JR, Barrie HD, O’Rourke P, Clouston AD, Powell EE. (2008) Obesity and steatosis influence serum and hepatic inflammatory markers in chronic hepatitis C. Hepatology. 48:80–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Durente-Mangoni E, et al. (2006) Hepatic steatosis and insulin resistance are associated with serum imbalance of adiponectin/tumour necrosis factor-alpha in chronic hepatitis C patients. Aliment Pharmacol. Ther. 24:1349–57.CrossRefGoogle Scholar
  141. 141.
    Ashour E, Samy N, Sayed M, Imam A. (2010) The relationship between serum adiponectin and steatosis in patients with chronic hepatitis C genotype-4. Clin. Lab. 56:103–10.PubMedGoogle Scholar
  142. 142.
    Wang AY, et al. (2005) High molecular weight adiponectin correlates with insulin sensitivity in patients with hepatitis C genotype 3, but not genotype 1 infection. Am. J. Gastroenterol. 100:2717–23.PubMedCrossRefGoogle Scholar
  143. 143.
    Hsu CS, et al. (2008) High hepatitis C viral load is associated with insulin resistance in patients with chronic hepatitis C. Liver Int. 28:271–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Zografos TA, et al. (2008) Adiponectin: a new independent predictor of liver steatosis and response to IFN-alpha treatment in chronic hepatitis C. Am. J. Gastroenterol. 103:605–14.PubMedCrossRefGoogle Scholar
  145. 145.
    Palmer C, Hampartzoumian T, Lloyd A, Zekry A. (2008) A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection. Hepatology. 48:374–84.PubMedCrossRefGoogle Scholar
  146. 146.
    Latif HA, Assal HS, Mahmoud M, Rasheed WI. (2011) Role of serum adiponectin level in the development of liver cirrhosis in patients with hepatitis C virus. Clin. Exp. Med. 11:123–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Fukushima N, et al. (2010) Adipocytokine involvement in hepatocellular carcinoma after sustained response to interferon for chronic hepatitis C. Hepatol. Res. 40:911–22.PubMedCrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Michał Kukla
    • 1
  • Włodzimierz Mazur
    • 2
  • Rafał J. Bułdak
    • 1
  • Krystyna Żwirska-Korczala
    • 1
  1. 1.Department of Physiology in ZabrzeMedical University of Silesia in KatowiceZabrzePoland
  2. 2.Department of Infectious Diseases in ChorzówMedical University of SilesiaKatowicePoland

Personalised recommendations