Molecular Medicine

, Volume 17, Issue 1–2, pp 21–28 | Cite as

Insulinlike Growth Factor-1Ec (MGF) Expression in Eutopic and Ectopic Endometrium: Characterization of the MGF E-Peptide Actions In Vitro

  • Dimitrios S. Milingos
  • Anastassios Philippou
  • Athanassios Armakolas
  • Efstathia Papageorgiou
  • Antigone Sourla
  • Athanassios Protopapas
  • Anthi Liapi
  • Aris Antsaklis
  • Minas Mastrominas
  • Michael Koutsilieris
Research Article


The transcription of the insulinlike growth factor 1 (igf-1) gene generates three mRNA isoforms, namely IGF-1Ea, IGF-1Eb and IGF-1Ec (or MGF [mechano growth factor]). Herein, we analyzed the expression of IGF-1 isoforms in eutopic and ectopic endometrium (red lesions and endometriotic cysts) of women with endometriosis, and we characterized the actions of a synthetic MGF E-peptide on KLE cells. Our data documented that all three igf-1 gene transcripts are expressed in the stromal cells of the eutopic and ectopic endometrium; however, endometriotic cysts contained significantly lower IGF-1 isoform expression, both at the mRNA and protein level, as was shown using semiquantitative PCR and immunohistochemical methods. In addition, the glandular cells of the eutopic endometrium did not express any of the IGF-1 isoforms; however, the glandular cells of the ectopic endometrium (red lesions) did express the IGF-1Ec at mRNA and protein level. Furthermore, synthetic MGF E-peptide, which comprised the last 24 amino acids of the MGF, stimulated the growth of the KLE cells. Experimental silencing of the type 1 IGF receptor (IGF-1R) and insulin receptor expression of KLE cells (siRNA knock-out methods) did not alter the mitogenic action of the synthetic MGF E-peptide, revealing that MGF E-peptide stimulates the growth of KLE cells via an IGF-1R-independent and insulin receptor-independent mechanism. These data suggest that the IGF-1Ec transcript might generate, apart from mature IGF-1 peptide, another posttrans-lational bioactive product that may have an important role in endometriosis pathophysiology.


  1. 1.
    Giudice LC, Kao LC. (2004) Endometriosis. Lancet 364:1789–99.CrossRefGoogle Scholar
  2. 2.
    Gao X, Outley J, Botteman M, Spalding J, Simon JA, Pashos CL. (2006) Economic burden of endometriosis. Fertil. Steril. 86:1561–72.CrossRefGoogle Scholar
  3. 3.
    Gebel HM, Braun DP, Tambur A, Frame D, Rana N, Dmowski WP. (1998) Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis. Fertil. Steril. 69:1042–7.CrossRefGoogle Scholar
  4. 4.
    Koutsilieris M, Mastrogamvrakis G, Lembessis P, Sourla A, Miligos S, Michalas S. (2001) Increased insulin-like growth factor 1 activity can rescue KLE endometrial-like cells from apoptosis. Mol. Med. 7:20–6.CrossRefGoogle Scholar
  5. 5.
    Kim JG, Suh CS, Kim SH, Choi YM, Moon SY, Lee JY. (2000) Insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP-3 protease activity in the peritoneal fluid of patients with and without endometriosis. Fertil. Steril. 73:996–1000.CrossRefGoogle Scholar
  6. 6.
    Koutsilieris M, Lavergne E, Lemay A. (1997) Association of protease activity against IGFBP-3 with peritoneal fluid mitogens: possible implications for the ectopic growth of endometrial cells in women with endometriosis. Anticancer Res. 17:1239–44.PubMedGoogle Scholar
  7. 7.
    Lembessis P, Kalariti N, Koutsilieris M. (2004) Glucocorticoid receptor function suppresses insulin-like growth factor 1 activity in human KLE endometrial-like cells. In Vivo 18:43–7.PubMedGoogle Scholar
  8. 8.
    Siegfried JM, Kasprzyk PG, Treston AM, Mulshine JL, Quinn KA, Cuttitta F. (1992) A mitogenic peptide amide encoded within the E peptide domain of the insulin-like growth factor IB prohormone. Proc. Natl. Acad. Sci. U. S. A. 89:8107–11.CrossRefGoogle Scholar
  9. 9.
    Gilmour RS. (1994) The implications of insulinlike growth factor mRNA heterogeneity. J. Endocrinol. 140:1–3.CrossRefGoogle Scholar
  10. 10.
    Chew SL, Lavender P, Clark AJ, Ross RJ. (1995) An alternatively spliced human insulin-like growth factor-I transcript with hepatic tissue expression that diverts away from the mitogenic IBE1 peptide. Endocrinology 136:1939–44.CrossRefGoogle Scholar
  11. 11.
    Shavlakadze T, Winn N, Rosenthal N, Grounds MD. (2005) Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm. IGF Res. 15:4–18.CrossRefGoogle Scholar
  12. 12.
    Kuo YH, Chen TT. (2002) Novel activities of pro-IGF-I E peptides: regulation of morphological differentiation and anchorage-independent growth in human neuroblastoma cells. Exp. Cell Res. 280:75–89CrossRefGoogle Scholar
  13. 13.
    Samani AA, Yakar S, LeRoith D, Brodt P. (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev. 28:20–47.CrossRefGoogle Scholar
  14. 14.
    Jones JI, Clemmons DR. (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16:3–34.PubMedGoogle Scholar
  15. 15.
    LeRoith D, Werner H, Beitner-Johnson D, Roberts CT. (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16:143–63.CrossRefGoogle Scholar
  16. 16.
    Kornfeld S. (1992) Structure and function of the mannose-6-phosphate/insulinlike growth factor II receptors. Annu. Rev. Biochem. 61:307–30.CrossRefGoogle Scholar
  17. 17.
    Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD. (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J. Physiol. 547:247–54.CrossRefGoogle Scholar
  18. 18.
    Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. (2005) Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J. Appl. Physiol. 98:482–8.CrossRefGoogle Scholar
  19. 19.
    Kim JS, Cross JM, Bamman MM. (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am. J. Physiol. Endocrinol. Metab. 288:E1110–9.CrossRefGoogle Scholar
  20. 20.
    Philippou A, et al. (2009) Expression of IGF-1 iso-forms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo 23:567–75.PubMedGoogle Scholar
  21. 21.
    Carpenter V, et al. (2008) Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ. 17:33–9.CrossRefGoogle Scholar
  22. 22.
    Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, Koutsilieris M. (2009) IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol. Med. 15:127–35.CrossRefGoogle Scholar
  23. 23.
    Milingos D, et al. (2006) Insulin-like growth factor-1 isoform mRNA expression in women with endometriosis: eutopic endometrium versus endometriotic cyst. Ann. N. Y. Acad. Sci. 1092:434–9.CrossRefGoogle Scholar
  24. 24.
    Noyes RW, Hertig AT, Rock J. (1975) Dating the endometrial biopsy. Am. J. Obstet. Gynecol. 122:262–3.CrossRefGoogle Scholar
  25. 25.
    Philippou A, Stavropoulou A, Sourla A, Pissimissis N, Halapas A, Maridaki M, Koutsilieris M. (2008) Characterization of a rabbit antihuman mechano growth factor (MGF) polyclonal antibody against the last 24 amino acids of the E domain. In Vivo 22:27–35.PubMedGoogle Scholar
  26. 26.
    Koutsilieris M, Rabbani SA, Goltzman D. (1987) Effects of human prostatic mitogens on rat bone cells and fibroblasts. J. Endocrinol. 115:447–54.CrossRefGoogle Scholar
  27. 27.
    Koutsilieris M, Sourla A, Pelletier G, Doillon CJ. (1994) Three-dimensional type I collagen gel system for the study of osteoblastic metastases produced by metastatic prostate cancer. J. Bone Miner. Res. 9:1823–32.CrossRefGoogle Scholar
  28. 28.
    Donnez J, Squifflet J, Casanas-Roux F, Pirard C, Jadoul P, van Langendonckt A. (2003) Typical and subtle atypical presentations of endometriosis. Obstet. Gynecol. Clin. N. Am. 30:83–93.CrossRefGoogle Scholar
  29. 29.
    Bogdanos J, Karamanolakis D, Tenta R, Tsintavis A, Milathianakis C, Mitsiades C, Koutsilieris M. (2003) Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton. Endocr. Relat. Cancer 10:279–89.CrossRefGoogle Scholar
  30. 30.
    Koutsilieris M, Mitsiades C, Sourla A. (2000) Insulin-like growth factor I and urokinase-type plasminogen activator bioregulation system as a survival mechanism of prostate cancer cells in osteoblastic metastases: development of anti-survival factor therapy for hormone-refractory prostate cancer. Mol. Med. 6:251–67.CrossRefGoogle Scholar
  31. 31.
    Koutsilieris M. (1992) Pathophysiology of uterine leiomyomas. Biochem. Cell Biol. 70:273–8.CrossRefGoogle Scholar
  32. 32.
    Cox ME, et al. (2009) Insulin receptor expression by human prostate cancers. Prostate 69:33–40.CrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Dimitrios S. Milingos
    • 1
  • Anastassios Philippou
    • 1
  • Athanassios Armakolas
    • 1
  • Efstathia Papageorgiou
    • 1
  • Antigone Sourla
    • 2
  • Athanassios Protopapas
    • 3
  • Anthi Liapi
    • 3
  • Aris Antsaklis
    • 3
  • Minas Mastrominas
    • 4
  • Michael Koutsilieris
    • 1
  1. 1.Department of Experimental Physiology, Medical SchoolNational and Kapodistrian University of AthensGoudiGreece
  2. 2.Endo/OncoResearch Medical LaboratoriesAmpelokipi-AthensGreece
  3. 3.First Department of Obstetrics and Gynecology, “ALEXANDRAS” General Hospital, Medical SchoolNational and Kapodistrian University of AthensAmpelokipi-AthensGreece
  4. 4.Embryogenesis, Inc.MaroussiGreece

Personalised recommendations