Advertisement

Molecular Medicine

, Volume 16, Issue 9–10, pp 438–449 | Cite as

ATP-Binding Membrane Cassette Transporter A1 (ABCA1): A Possible Link between Inflammation and Reverse Cholesterol Transport

  • Kai Yin
  • Duan-fang Liao
  • Chao-ke Tang
Review Article

Abstract

Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Sciences Foundation of China (30470720), Post-doctor Sciences Foundation of China (2005037157), and The Heng Yang Joint Funds of The Hunan Provincial Natural Sciences Foundation of China (10JJ9019).

References

  1. 1.
    Shimada K. (2009) Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circ. J. 73:994–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Tiwari RL, Singh V, Barthwal MK. (2008) Macrophages: an elusive yet emerging therapeutic target of atherosclerosis. Med. Res. Rev. 28:483–544.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gori AM, et al. (2009) The balance between pro-and anti-inflammatory cytokines is associated with platelet aggregability in acute coronary syndrome patients. Atherosclerosis 202:255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kleemann R, Zadelaar S, Kooistra T. (2008) Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc. Res. 79:360–376.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Alizadeh Dehnavi R, et al. (2008) Elevated CRP levels are associated with increased carotid atherosclerosis independent of visceral obesity. Atherosclerosis 200:417–23.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 50 Suppl: S189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Tang CK, et al. (2004) Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophagederived foam cells. Acta. Biochim. Biophys. Sin. (Shanghai) 36:218–26.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    McGillicuddy FC, et al. (2009) Inflammation impairs reverse cholesterol transport in vivo. Circulation 119:1135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M. (2008) In-vivo effects of simvastatin and rosuvastatin on global gene expression in peripheral blood leucocytes in a human inflammation model. Pharmacogenet. Genomics. 18:109–20.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mei CL, et al. (2007) Interleukin-10 inhibits the down-regulation of ATP binding cassette transporter A1 by tumour necrosis factor-alpha in THP-1 macrophage-derived foam cells. Cell. Biol. Int. 31:1456–61.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Zhao SP, Dong SZ. (2008) Effect of tumor necrosis factor alpha on cholesterol efflux in adipocytes. Clin. Chim. Acta. 389:67–71.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wang Y, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. (2005) Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J. Lipid Res. 46:2377–87.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Baranova I, et al. (2002) Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect. Immun. 70:2995–3003.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. (2009) The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J. Biol. Chem. 284:32336–43.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yvan-Charvet L, et al. (2008) Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118:1837–47.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Koseki M, et al. (2007) Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-alpha secretion in Abca1-deficient macrophages. J. Lipid Res. 48:299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hollenstein K, Dawson RJ, Locher KP. (2007) Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17:412–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Tang C, Oram JF. (2009) The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim. Biophys. Acta. 1791:563–72.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Schmitz G, et al. (1999) ATP-binding cassette transporter A1 (ABCA1) in macrophages: a dual function in inflammation and lipid metabolism? Pathobiology 67:236–40.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Langmann T, et al. (1999) Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun. 257:29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Aiello RJ, Brees D, Francone OL. (2003) ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler. Thromb. Vasc. Biol. 23:972–80.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Francone OL, Aiello RJ. (2002) ABCA1: regulation, function and relationship to atherosclerosis. Curr. Opin. Investig. Drugs. 3:415–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Soumian S, Albrecht C, Davies AH, Gibbs RG. (2005) ABCA1 and atherosclerosis. Vasc. Med. 10:109–19.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lawn RM, et al. (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104:R25–31.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Majdalawieh A, Ro HS. (2009) LPS-induced suppression of macrophage cholesterol efflux is mediated by adipocyte enhancer-binding protein 1. Int. J. Biochem. Cell Biol. 41:1518–25.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hu YW, et al. (2009) Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis 204:e35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zhang C, et al. (2006) NO-1886 upregulates ATP binding cassette transporter A1 and inhibits dietinduced atherosclerosis in Chinese Bama minipigs. J. Lipid Res. 47:2055–63.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Judkins CP, et al. (2010) Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am. J. Physiol. Heart Circ. Physiol. 298: H24–32.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    DePalma RG, et al. (2003) Cytokine signatures in atherosclerotic claudicants. J. Surg. Res. 111:215–21.CrossRefGoogle Scholar
  30. 30.
    Alfaro Leon ML, Evans GF, Farmen MW, Zuckerman SH. (2005) Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-gamma. Biochem. Biophys. Res. Commun. 333:596–602.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hao XR, et al. (2009) IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 203:417–28.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chen M, Li W, Wang N, Zhu Y, Wang X. (2007) ROS and NF-kappaB but not LXR mediate IL-1beta signaling for the downregulation of ATP-binding cassette transporter A1. Am. J. Physiol. Cell Physiol. 292:C1493–1501.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhang GJ, Li H, Li XW. (2008) Effects of rapamycin on intracellular cholesterol homeostasis of glomerular mesangial cell in the presence of interleukin-1 beta. Chin. Med. Sci. J. 23:205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ma KL, Ruan XZ, Powis SH, Moorhead JF, Varghese Z. (2007) Anti-atherosclerotic effects of sirolimus on human vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292:H2721–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ma KL, et al. (2008) Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology 48:770–81.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Nagao S, et al. (2006) Platelet derived growth factor regulates ABCA1 expression in vascular smooth muscle cells. FEBS Lett. 580:4371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Rubic T, Lorenz RL. (2006) Downregulated CD36 and oxLDL uptake and stimulated ABCA1/G1 and cholesterol efflux as anti-atherosclerotic mechanisms of interleukin-10. Cardiovasc. Res. 69:527–35.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Han X, Kitamoto S, Lian Q, Boisvert WA. (2009) Interleukin-10 facilitates both cholesterol uptake and efflux in macrophages. J. Biol. Chem. 284:32950–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Argmann CA, et al. (2001) Transforming growth factor-beta1 inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler. Thromb. Vasc. Biol. 21:2011–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Panousis CG, Evans G, Zuckerman SH. (2001) TGF-beta increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-gamma. J. Lipid Res. 42:856–63.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Schreyer SA, Peschon JJ, LeBoeuf RC. (1996) Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. JBiol. Chem. 271:26174–8.CrossRefGoogle Scholar
  42. 42.
    Wang YF, et al. (2010) Protective effect of Astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cells exposed to tumor necrosis factor-alpha. Phytother. Res. 24:393–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Gerbod-Giannone MC, et al. (2006) TNFalpha induces ABCA1 through NF-kappaB in macrophages and in phagocytes ingesting apoptotic cells. Proc. Natl. Acad. Sci. U. S. A. 103:3112–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kazawa T, et al. (2009) Expression of liver X receptor alpha and lipid metabolism in granulocyte-macrophage colony-stimulating factor-induced human monocyte-derived macrophage. Pathol. Int. 59:152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ditiatkovski M, Toh BH, Bobik A. (2006) GM-CSF deficiency reduces macrophage PPAR-gamma expression and aggravates atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 26:2337–44.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Thomassen MJ, et al. (2007) ABCG1 is deficient in alveolar macrophages of GM-CSF knockout mice and patients with pulmonary alveolar proteinosis. J. Lipid Res. 48:2762–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wang X, et al. (2008) C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler. Thromb. Vasc. Biol. 28:519–26.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Nordestgaard BG, Zacho J. (2009) Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander? Nutr. Metab. Cardiovasc. Dis. 19:521–4.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hanriot D, et al. (2008) C-reactive protein induces pro- and anti-inflammatory effects, including activation of the liver X receptor alpha, on human monocytes. Thromb Haemost 99:558–69.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Filep JG. (2008) Perplexity of monocyte responses to C-reactive protein (CRP). Thromb. Haemost. 99:461–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Maury E, Brichard SM. (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314:1–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Tian L, et al. (2009) Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis 202:152–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Tsubakio-Yamamoto K, et al. (2008) Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem. Biophys. Res. Commun. 375:390–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Oku H, et al. (2007) Adiponectin deficiency suppresses ABCA1 expression and ApoA-I synthesis in the liver. FEBS Lett. 581:5029–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Baber SR, Champion HC, Bivalacqua TJ, Hyman AL, Kadowitz PJ. (2003) Role of cyclooxygenase-2 in the generation of vasoactive prostanoids in the rat pulmonary and systemic vascular beds. Circulation 108:896–901.PubMedCrossRefGoogle Scholar
  56. 56.
    Reiss AB, Anwar F, Chan ES, Anwar K. (2009) Disruption of cholesterol efflux by coxib medications and inflammatory processes: link to increased cardiovascular risk. J. Investig. Med. 57:695–702.PubMedCrossRefGoogle Scholar
  57. 57.
    Chan ES, et al. (2007) Effect of cyclooxygenase inhibition on cholesterol efflux proteins and atheromatous foam cell transformation in THP-1 human macrophages: a possible mechanism for increased cardiovascular risk. Arthritis Res. Ther. 9: R4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Reiss AB, et al. (2008) Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis Rheum. 58:3675–83.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ronald JA, et al. (2009) Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120:592–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bergt C, et al. (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl. Acad. Sci. U. S. A. 101:13032–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shao B, et al. (2006) Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J. Biol. Chem. 281:9001–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J. Clin. Invest. 104:103–13.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Passarelli M, et al. (2005) Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes 54:2198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Letavernier E, et al. (2008) Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension. Circ. Res. 102:720–28.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang N, et al. (2003) A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest. 111:99–107.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Iwamoto N, Lu R, Tanaka N, Abe-Dohmae S, Yokoyama S. (2010) Calmodulin interacts with ATP binding cassette transporter A1 to protect from calpain-mediated degradation and upregulates high-density lipoprotein generation. Arterioscler. Thromb. Vasc. Biol. 30:1446–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Arakawa R, et al. (2009) Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antiatherogenesis. J. Lipid Res. 50:2299–2305.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jackson SK, Abate W, Tonks AJ. (2008) Lysophospholipid acyltransferases: novel potential regulators of the inflammatory response and target for new drug discovery. Pharmacol. Ther. 119:104–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Hou M, et al. (2007) Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARgamma-LXRalpha-ABCA1-dependent pathway associated with apoE. Cell Biochem. Funct. 25:33–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Rosenblat M, Vaya J, Shih D, Aviram M. (2005) Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclerosis 179:69–77.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Jeon SG, et al. (2009) 15-Lipoxygenase metabolites play an important role in the development of a T-helper type 1 allergic inflammation induced by double-stranded RNA. Clin. Exp. Allergy 39:908–17.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Montero A, Badr KF. (2000) 15-Lipoxygenase in glomerular inflammation. Exp. Nephrol. 8:14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Pirillo A, Uboldi P, Kuhn H, Catapano AL. (2006) 15-Lipoxygenase-mediated modification of high-density lipoproteins impairs SR-BI- and ABCA1-dependent cholesterol efflux from macrophages. Biochim. Biophys. Acta. 1761:292–300.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Fery F, Paquot N. (2005) Etiopathogenesis and pathophysiology of type 2 diabetes [in French]. Rev Med Liege 60:361–8.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Sacks FM, Campos H. (2006) Polyunsaturated fatty acids, inflammation, and cardiovascular disease: time to widen our view of the mechanisms. J. Clin. Endocrinol. Metab 91:398–400.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Brown JM, et al. Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30:24–30.Google Scholar
  77. 77.
    Sun Y, et al. (2003) Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J. Biol. Chem. 278:5813–20.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wang Y, Kurdi-Haidar B, Oram JF. (2004) LXR-mediated activation of macrophage stearoyl-CoA desaturase generates unsaturated fatty acids that destabilize ABCA1. J. Lipid Res. 45:972–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Mauerer R, Ebert S, Langmann T. (2009) High glucose, unsaturated and saturated fatty acids differentially regulate expression of ATP-binding cassette transporters ABCA1 and ABCG1 in human macrophages. Exp. Mol. Med. 41:126–32.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mattson FH, Grundy SM. (1985) Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J. Lipid Res. 26:194–202.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Gustafson B, Hammarstedt A, Andersson CX, Smith U. (2007) Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27:2276–83.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. (2009) Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50:3–21.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lu B, Moser AH, Shigenaga JK, Feingold KR, Grunfeld C. (2006) Type II nuclear hormone receptors, coactivator, and target gene repression in adipose tissue in the acute-phase response. J. Lipid Res. 47:2179–90.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Castrillo A, et al. (2003) Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell 12:805–16.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Khovidhunkit W, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. (2003) Endotoxin down-regulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages: differential role of LXR. J. Lipid Res. 44:1728–36.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Maitra U, Parks JS, Li L. (2009) An innate immunity signaling process suppresses macrophage ABCA1 expression through IRAK-1-mediated downregulation of retinoic acid receptor alpha and NFATc2. Mol. Cell. Biol. 29:5989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zhu X, et al. (2008) Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283:22930–41.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Francone OL, et al. (2005) Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arterioscler. Thromb. Vasc. Biol. 25:1198–1205.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    McNeish J, et al. (2000) High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc. Natl. Acad. Sci. U. S. A. 97:4245–50.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Christiansen-Weber TA, et al. (2000) Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high-density lipoprotein cholesterol deficiency. Am. J. Pathol. 157:1017–29.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    van Eck M, et al. (2002) Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl. Acad. Sci. U. S. A. 99:6298–6303.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Aiello RJ, et al. (2002) Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vasc. Biol. 22:630–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Serfaty-Lacrosniere C, et al. (1994) Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 107:85–98.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Van Eck M, et al. (2006) Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 26:929–34.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Murphy AJ, et al. (2008) High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28:2071–77.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Pradel LC, et al. (2009) ATP-binding cassette transporter hallmarks tissue macrophages and modulates cytokine-triggered polarization programs. Eur. J. Immunol. 39:2270–80.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Tellier E, et al. (2008) HDLs activate ADAM17-dependent shedding. J. Cell Physiol. 214:687–93.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, Zha X. (2006) ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J. Biol. Chem. 281:36091–101.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jessup W, Gelissen IC, Gaus K, Kritharides L. (2006) Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr. Opin. Lipidol. 17:247–57.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Adorni MP, et al. (2007) The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res. 48:2453–62.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Wang X, et al. (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117:2216–24.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yvan-Charvet L, et al. (2007) Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest. 117:3900–8.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wojcik AJ, Skaflen MD, Srinivasan S, Hedrick CC. (2008) A critical role for ABCG1 in macrophage inflammation and lung homeostasis. J. Immunol. 180:4273–82.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Baldan A, Gomes AV, Ping P, Edwards PA. (2008) Loss of ABCG1 results in chronic pulmonary inflammation. J. Immunol. 180:3560–68.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kennedy MA, et al. (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1:121–31.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wang N, Lan D, Chen W, Matsuura F, Tall AR. (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl. Acad. Sci. U. S. A. 101:9774–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brunham LR, et al. (2007) Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 13:340–47.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Koseki M, et al. (2009) Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations. J. Atheroscler. Thromb. 16:292–296.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Seimon T, Tabas I. (2009) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid. Res. 50 Suppl: S382–7.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Gautier EL, et al. (2009) Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 119:1795–1804.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Li F, et al. (2008) Free cholesterol-induced macrophage apoptosis is mediated by inositol-requiring enzyme 1 alpha-regulated activation of Jun N-terminal kinase. Acta. Biochim. Biophys. Sin. (Shanghai) 40:226–34.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Devries-Seimon T, et al. (2005) Cholesterolinduced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J. Cell Biol. 171:61–73.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yao PM, Tabas I. (2001) Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J. Biol. Chem. 276:42468–76.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Yao PM, Tabas I. (2000) Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J. Biol. Chem. 275:23807–13.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Zha X, Gauthier A, Genest J, McPherson R. (2003) Secretory vesicular transport from the Golgi is altered during ATP-binding cassette protein A1 (ABCA1)-mediated cholesterol efflux. J. Biol. Chem. 278:10002–5.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Venegas V, Zhou Z. (2007) Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol. Biol. Cell 18:3180–92.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bared SM, et al. (2004) Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells. Mol. Biol. Cell 15:5399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Baldan A, et al. (2006) Impaired development of atherosclerosis in hyperlipidemic Ldlr-/-and ApoE-/- mice transplanted with Abcg1-/-bone marrow. Arterioscler. Thromb. Vasc. Biol. 26:2301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Terasaka N, Wang N, Yvan-Charvet L, Tall AR. (2007) High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc. Natl. Acad. Sci. U. S. A. 104:15093–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Arai S, et al. (2005) A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab. 1:201–13.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Getz GS, Reardon CA. (2008) SAA, HDL biogenesis, and inflammation. J. Lipid Res. 49:269–70.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Sampietro T, Bigazzi F, Puntoni M, Bionda A. (2006) HDL inflammation and atherosclerosis: current and future perspectives. Future Cardiol. 2:37–48.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    van der Westhuyzen DR, de Beer FC, Webb NR. (2007) HDL cholesterol transport during inflammation. Curr. Opin. Lipidol. 18:147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kontush A, Chapman MJ. (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58:342–74.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Abe-Dohmae S, et al. (2006) Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1- or ABCA7-dependent manner. J. Lipid Res. 47:1542–50.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC. (2005) Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I. J. Biol. Chem. 280:35890–5.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Stonik JA, et al. (2004) Serum amyloid A promotes ABCA1-dependent and ABCA1-independent lipid efflux from cells. Biochem. Biophys. Res. Commun. 321:936–41.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Marsche G, et al. (2007) The lipidation status of acute-phase protein serum amyloid A determines cholesterol mobilization via scavenger receptor class B, type I. Biochem. J. 402:117–24.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hu W, et al. (2008) Biogenesis of HDL by SAA is dependent on ABCA1 in the liver in vivo. J. Lipid Res. 49:386–93.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Schippling S, et al. (2008) Severe Tangier disease with a novel ABCA1 gene mutation. Neurology 71:1454–5.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ishii J, et al. (2002) Clinical variant of Tangier disease in Japan: mutation of the ABCA1 gene in hypoalphalipoproteinemia with corneal lipidosis. J. Hum. Genet. 47:366–69.PubMedCrossRefGoogle Scholar
  132. 132.
    Brunham LR, Singaraja RR, Hayden MR. (2006) Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu. Rev. Nutr. 26:105–29.PubMedCrossRefGoogle Scholar
  133. 133.
    Matsukawa A, Takeda K, Kudo S, Maeda T, Kagayama M, Akira S. (2003) Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol. 171:6198–205.PubMedCrossRefGoogle Scholar
  134. 134.
    Oram JF, Lawn RM. (2001) ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J. Lipid Res. 42:1173–9.PubMedGoogle Scholar
  135. 135.
    Oram JF, Vaughan AM. (2006) ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 99:1031–43.PubMedCrossRefGoogle Scholar
  136. 136.
    Oram JF, Heinecke JW. (2005) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev. 85:1343–72.PubMedCrossRefGoogle Scholar
  137. 137.
    Attie AD, Kastelein JP, Hayden MR. (2001) Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J. Lipid Res. 42:1717–26.PubMedGoogle Scholar
  138. 138.
    Uchida K, et al. (2004) High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood 103:1089–98.PubMedCrossRefGoogle Scholar
  139. 139.
    Boisvert WA, et al. (2006) Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler. Thromb. Vasc. Biol. 26:563–69.PubMedCrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2010

Authors and Affiliations

  1. 1.Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research CenterUniversity of South ChinaHengyangChina
  2. 2.Department of Traditional Chinese Diagnostics, School of PharmacyHunan University of Chinese MedicineHunanChina

Personalised recommendations