Advertisement

Molecular Medicine

, Volume 15, Issue 1–2, pp 51–59 | Cite as

On the Physiology and Pathophysiology of Antimicrobial Peptides

  • Roland Pálffy
  • Roman Gardlík
  • Michal Behuliak
  • Ludevit Kadasi
  • Jan Turna
  • Peter Celec
Review Article

Abstract

Antimicrobial peptides (AMP) are a heterogeneous group of molecules involved in the nonspecific immune responses of a variety of organisms ranging from prokaryotes to mammals, including humans. AMP have various physical and biological properties, yet the most common feature is their antimicrobial effect. The majority of AMP disrupt the integrity of microbial cells by 1 of 3 known mechanisms—the barrel-stave pore model, the thoroidal pore model, or the carpet model. Results of growing numbers of descriptive and experimental studies show that altered expression of AMP in various tissues is important in the pathogenesis of several gastrointestinal, respiratory, and other diseases. We discuss novel approaches and strategies to further improve the promising future of therapeutic applications of AMP. The spread of antibiotic resistance increases the importance of developing a clinical role for AMP.

Notes

Acknowledgments

This work was supported by Ministry of Health of Slovakia grant 2006/24-UK-03, VEGA grant 1/4316/07 and Slovak Research and Development Agency grant LPP-0133-06.

References

  1. 1.
    Bals R. (2000) Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1:141–50.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tollin M, et al. (2003) Antimicrobial peptides in the first line defence of human colon mucosa. Peptides 24:523–30.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zeya HI, Spitznagel JK. (1966) Antimicrobial specificity of leukocyte lysosomal cationic proteins. Science 154:1049–51.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ganz T, et al. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76:1427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sorensen OE, Borregaard N, Cole AM. (2008) Antimicrobial peptides in innate immune responses. Contrib. Microbiol. 15:61–77.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Schutte BC, et al. (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. U. S. A. 99:2129–33.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Matyus E, Kandt C, Tieleman DP. (2007) Computer simulation of antimicrobial peptides. Curr. Med. Chem. 14:2789–98.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ganz T, Lehrer RI. (1995) Defensins. Pharmacol. Ther. 66:191–205.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Suttmann H, Retz M, Paulsen F, et al. (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 8:5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Powers JP, Hancock RE. (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–91.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Zasloff M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–95.CrossRefGoogle Scholar
  12. 12.
    Vizioli J, Salzet M. (2002) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. 23:494–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lehrer RI. (2004) Primate defensins. Nat. Rev. Microbiol. 2:727–38.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Marshall SH, Arenas G. (2003) Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron. J. Biotechnol. 6:271–84.CrossRefGoogle Scholar
  15. 15.
    Lehrer RI, Ganz T. (1999) Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11:23–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Salzet M, Tasiemski A. (2001) Involvement of pro-enkephalin-derived peptides in immunity. Dev. Comp. Immunol. 25:177–85.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schittek B, et al. (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2:1133–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lai YP, et al. (2005) Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide. Biochem. Biophys. Res. Commun. 328:243–50.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nakajima Y, Ogihara K, Taylor D, Yamakawa M. (2003) Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J. Med. Entomol. 40:78–81.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Munoz M, Vandenbulcke F, Gueguen Y, Bachere E. (2003) Expression of penaeidin antimicrobial peptides in early larval stages of the shrimp Penaeus vannamei. Dev. Comp. Immunol. 27:283–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Shelburne CE, et al. (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 59:297–300.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Oscariz JC, Pisabarro AG. (2001) Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int. Microbiol. 4:13–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Padilla C, Lobos O, Brevis P, Abaca P, Hubert E. (2006) Plasmid-mediated bacteriocin production by Shigella flexneri isolated from dysenteric diarrhoea and their transformation into Escherichia coli. Lett. Appl. Microbiol. 42:300–3.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Heng NC, et al. (2006) Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 152:1991–2001.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    O’Sullivan L, Ross RP, Hill C. (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fleming A. (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B. Biol. Sci. 93:306–17.CrossRefGoogle Scholar
  27. 27.
    Miller B, Abrams R, Dorfman A, Klein M. (1942) Antibacterial properties of protamines and histone. Science 96:428–30.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nakashima A, et al. (2008) Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion. Am. J. Pathol. 173:653–64.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lusitani D, Malawista SE, Montgomery RR. (2003) Calprotectin, an abundant cytosolic protein from human polymorphonuclear leukocytes, inhibits the growth of Borrelia burgdorferi. Infect. Immun. 71:4711–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schultz H, Weiss JP. (2007) The bactericidal/permeability-increasing protein (BPI) in infection and inflammatory disease. Clin. Chim. Acta 384:12–23.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jenssen H, Hancock RE. (2008) Antimicrobial properties of lactoferrin. Biochimie 2008, June 5 [Epub ahead of print].Google Scholar
  32. 32.
    Rydengard V, et al. (2008) Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog. 4:e1000116.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chan DI, Prenner EJ, Vogel HJ. (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta 1758:1184–202.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dawson RM, Liu CQ. (2008) Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit. Rev. Microbiol. 34:89–107.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hancock RE. (1997) Antibacterial peptides and the outer membranes of gram-negative bacilli. J. Med. Microbiol. 46:1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lehrer RI, et al. (1989) Interaction of human defensins with Escherichia coli: mechanism of bactericidal activity. J. Clin. Invest. 84:553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ehrenstein G, Lecar H. (1977) Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10:1–34.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mor A, Nicolas P. (1994) The NH2-terminal alpha-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem. 269:1934–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry (Mosc.) 31:12416–23.CrossRefGoogle Scholar
  40. 40.
    Ben-Efraim I, Shai Y. (1997) The structure and organization of synthetic putative membranous segments of ROMK1 channel in phospholipid membranes. Biophys. J. 72:85–96.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Matsuzaki K, et al. (1991) A comparative study on interactions of alpha-aminoisobutyric acid containing antibiotic peptides, trichopolyn I and hypelcin A with phosphatidylcholine bilayers. Biochim. Biophys. Acta 1070:419–28.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Oren Z, Shai Y. (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–63.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Miteva M, Andersson M, Karshikoff A, Otting G. (1999) Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 462:155–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Pokorny A, Almeida PF. (2004) Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry (Mosc.) 43:8846–57.CrossRefGoogle Scholar
  45. 45.
    Brogden KA. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238–50.Google Scholar
  46. 46.
    Hancock RE, Chapple DS. (1999) Peptide antibiotics. Antimicrob. Agents Chemother. 43:1317–23.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Subbalakshmi C, Sitaram N. (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160:91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M. (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr. Pharm. Des. 8:763–78.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Boman HG, Agerberth B, Boman A. (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61:2978–84.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Tsai H, Bobek LA. (1998) Human salivary histatins: promising anti-fungal therapeutic agents. Crit. Rev. Oral Biol. Med. 9:480–97.PubMedCrossRefGoogle Scholar
  51. 51.
    Gryllos I, et al. (2008) Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc. Natl. Acad. Sci. U. S. A. 105:16755–60.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    De Y, et al. (2000) LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192:1069–74.CrossRefGoogle Scholar
  53. 53.
    Chertov O, et al. (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemo-attractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271:2935–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Kolls JK, McCray PB Jr, Chan YR. (2008) Cytokine-mediated regulation of antimicrobial proteins. Nat. Rev. Immunol. 8:829–35.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Durr M, Peschel A. (2002) Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect. Immun. 70:6515–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Prohaszka Z, et al. (1997) Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol. Immunol. 34:809–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Ichinose M, Asai M, Imai K, Sawada M. (1996) Enhancement of phagocytosis by corticostatin I (CSI) in cultured mouse peritoneal macrophages. Immunopharmacology 35:103–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Chong KT, et al. (2006) High level expression of human epithelial beta-defensins (hBD-1, 2 and 3) in papillomavirus induced lesions. Virol. J. 3:75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Eliasson M, Egesten A. (2008) Antibacterial chemokines—actors in both innate and adaptive immunity. Contrib. Microbiol. 15:101–17.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kamysz W, Okroj M, Lukasiak J. (2003) Novel properties of antimicrobial peptides. Acta Biochim. Pol. 50:461–9.PubMedGoogle Scholar
  61. 61.
    van’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. (2001) Antimicrobial peptides: properties and applicability. Biol. Chem. 382:597–619.CrossRefGoogle Scholar
  62. 62.
    Mantovani HC, Russell JB. (2001) Nisin resistance of Streptococcus bovis. Appl. Environ. Microbiol. 67:808–13.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yeaman MR, Yount NY. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27–55.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nizet V. (2006) Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr. Issues Mol. Biol. 8:11–26.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Nahaie MR, Goodfellow M, Minnikin DE, Hajek V. (1984) Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J. Gen. Microbiol. 130:2427–37.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gyurko C, Lendenmann U, Troxler RF, Oppenheim FG. (2000) Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob. Agents Chemother. 44:348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM. (1998) Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J. Clin. Invest. 101:178–87.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kindrachuk J, Paur N, Reiman C, Scruten E, Napper S. (2007) The PhoQ-activating potential 58 of antimicrobial peptides contributes to antimicrobial efficacy and is predictive of the induction of bacterial resistance. Antimicrob. Agents Chemother. 51:4374–81.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li M, et al. (2007) Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. U. S. A. 104:9469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mount KL, Townsend CA, Bauer ME. (2007) Haemophilus ducreyi is resistant to human antimicrobial peptides. Antimicrob. Agents Chemother. 51:3391–3.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Antibiotic resistance [Internet]. Rockville (MD): US Food and Drug Administration; [cited 2008 Oct 10]. See section “A Growing Threat.” Available from: http://www.fda.gov/oc/opacom/hottopics/anti_resist.html.
  72. 72.
    Finch R, Hunter PA. (2006) Antibiotic resistance—action to promote new technologies: report of an EU Intergovernmental Conference held in Birmingham, UK, 12–13 December 2005. J. Antimicrob. Chemother. 58Suppl 1: i3–22.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sit CS, Vederas JC. (2008) Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem. Cell Biol. 86:116–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Lupetti A, van Dissel JT, Brouwer CP, Nibbering PH. (2008) Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur. J. Clin. Microbiol. Infect. Dis. 27:1125–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Carriel-Gomes MC, et al. (2007) In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem. Inst. Oswaldo Cruz 102:469–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Moreira CK, et al. (2007) Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp. Parasitol. 116:346–53.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ghavami S, et al. (2008) Brevinin-2R(1) semiselectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J. Cell. Mol. Med. 12:1005–22.PubMedCrossRefGoogle Scholar
  78. 78.
    Gambichler T, et al. (2006) Pattern of mRNA expression of beta-defensins in basal cell carcinoma. BMC Cancer 6:163.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cole AM, Cole AL. (2008) Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am. J. Reprod. Immunol. 59:27–34.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lee HY, et al. (2008) Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infect. Dis. 8:87.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Han S, Bishop BM, van Hoek ML. (2008) Antimicrobial activity of human beta-defensins and induction by Francisella. Biochem. Biophys. Res. Commun. 371:670–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Schlee M, et al. (2007) Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 75:2399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Aberg KM, et al. (2007) Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J. Clin. Invest. 117:3339–49.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Raqib R, et al. (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl. Acad. Sci. U. S. A. 103:9178–83.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Yim S, Dhawan P, Ragunath C, Christakos S, Diamond G. (2007) Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J. Cyst. Fibros. 6:403–10.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Beisswenger C, et al. (2006) Allergic airway inflammation inhibits pulmonary antibacterial host defense. J. Immunol. 177:1833–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Niyonsaba F, et al. (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 127:594–604.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Di Nardo A, et al. (2007) Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J. Immunol. 178:1829–34.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yoshioka M, et al. (2008) Human cathelicidin CAP18/LL-37 changes mast cell function toward innate immunity. Biol. Pharm. Bull. 31:212–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Giacometti A, et al. (2004) Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock. Am. J. Respir. Crit. Care Med. 169:187–94.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Giacometti A, et al. (2004) The antimicrobial peptide BMAP-28 reduces lethality in mouse models of staphylococcal sepsis. Crit. Care Med. 32:2485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chromek M, et al. (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12:636–41.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Cirioni O, et al. (2006) LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob. Agents Chemother. 50:1672–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bu HF, et al. (2006) Lysozyme-modified probiotic components protect rats against polymicrobial sepsis: role of macrophages and cathelicidin-related innate immunity. J. Immunol. 177:8767–76.CrossRefGoogle Scholar
  95. 95.
    Yang YH, et al. (2006) The cationic host defense peptide rCRAMP promotes gastric ulcer healing in rats. J. Pharmacol. Exp. Ther. 318:547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Isaacson RE. (2003) MBI-226. Micrologix/Fujisawa. Curr. Opin. Investig. Drugs 4:999–1003.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Ikeda Y, Young LH, Scalia R, Ross CR, Lefer AM. (2001) Pr-39, a proline/arginine-rich antimicrobial peptide, exerts cardioprotective effects in myocardial ischemia-reperfusion. Cardiovasc. Res. 49:69–77.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Post MJ, et al. (2006) Adenoviral PR39 improves blood flow and myocardial function in a pig model of chronic myocardial ischemia by enhancing collateral formation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R494–500.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Altman H, et al. (2006) In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J. Antimicrob. Chemother. 58:198–201.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tjabringa GS, Rabe KF, Hiemstra PS. (2005) The human cathelicidin LL-37: a multifunctional peptide involved in infection and inflammation in the lung. Pulm. Pharmacol. Ther. 18:321–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Mickels N, et al. (2001) Clinical and microbial evaluation of a histatin-containing mouthrinse in humans with experimental gingivitis. J. Clin. Periodontol. 28:404–10.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Cazzola M, Sanduzzi A, Matera MG. (2003) Novelties in the field of antimicrobial compounds for the treatment of lower respiratory tract infections. Pulm. Pharmacol. Ther. 16:131–145.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Toney JH. (2002) Iseganan (IntraBiotics pharmaceuticals). Curr. Opin. Investig. Drugs 3:225–8.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Loury D, Embree JR, Steinberg DA, Sonis ST, Fiddes JC. (1999) Effect of local application of the antimicrobial peptide IB-367 on the incidence and severity of oral mucositis in hamsters. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87:544–51.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Smith JJ, Travis SM, Greenberg EP, Welsh MJ. (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ciornei CD, Tapper H, Bjartell A, Sternby NH, Bodelsson M. (2006) Human antimicrobial peptide LL-37 is present in atherosclerotic plaques and induces death of vascular smooth muscle cells: a laboratory study. BMC Cardiovasc. Disord. 6:49.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Edfeldt K, et al. (2006) Involvement of the antimicrobial peptide LL-37 in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26:1551–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Bick RJ, et al. (2007) Nuclear localization of HBD-1 in human keratinocytes. J. Burns Wounds 7:e3.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Mader JS, Hoskin DW. (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs 15:933–46.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Jacob L, Zasloff M. (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found. Symp. 186:197–216; discussion 216–23.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Lehmann J, et al. (2006) Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur. Urol. 50:141–7.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Winder D, Gunzburg WH, Erfle V, Salmons B. (1998) Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem. Biophys. Res. Commun. 242:608–12.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lichtenstein A, Ganz T, Selsted ME, Lehrer RI. (1986) In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 68:1407–10.PubMedGoogle Scholar
  114. 114.
    Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ. (2003) In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 24:945–53.PubMedCrossRefGoogle Scholar
  115. 115.
    Hamanaka Y, et al. (2001) Expression of human beta-defensin 2 (hBD-2) in Helicobacter pylori induced gastritis: antibacterial effect of hBD-2 against Helicobacter pylori. Gut 49:481–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hancock RE. (1999) Host defence (cationic) peptides: 59 what is their future clinical potential? Drugs 57:469–473.PubMedCrossRefGoogle Scholar
  117. 117.
    Joerger RD. (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82:640–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Yun JH, et al. (2005) Identification of Lactobacillus ruminus SPM0211 isolated from healthy Koreans and its antimicrobial activity against some pathogens. Arch. Pharm. Res. 28:660–6.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Urdaci MC, Bressollier P, Pinchuk I. (2004) Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 38: S86–90.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Duc le H, Hong HA, Barbosa TM, Henriques AO, Cutting SM. (2004) Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70:2161–71.PubMedCentralCrossRefGoogle Scholar
  121. 121.
    Celec P, et al. (2005) The use of transformed Escherichia coli for experimental angiogenesis induced by regulated in situ production of vascular endothelial growth factor—an alternative gene therapy. Med. Hypotheses 64:505–11.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Fellermann K, Wehkamp J, Herrlinger KR, Stange EF. (2003) Crohn’s disease: a defensin deficiency syndrome? Eur. J. Gastroenterol. Hepatol. 15:627–34.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Wehkamp J, Fellermann K, Stange EF. (2005) Human defensins in Crohn’s disease. Chem. Immunol. Allergy 86:42–54.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Peyrin-Biroulet L, et al. (2006) NODs in defence: from vulnerable antimicrobial peptides to chronic inflammation. Trends Microbiol. 14:432–8.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Dale BA, Tao R, Kimball JR, Jurevic RJ. (2006) Oral antimicrobial peptides and biological control of caries. BMC Oral Health 6 Suppl 1:S13.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Valore EV, Wiley DJ, Ganz T. (2006) Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect. Immun. 74:5693–702.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bals R, Wilson JM. (1999) Cystic fibrosis, antimicrobial peptides and gene therapy. Neth. J. Med. 54: S10–1.CrossRefGoogle Scholar
  128. 128.
    McMichael JW, et al. (2005) Antimicrobial activity of murine lung cells against Staphylococcus aureus is increased in vitro and in vivo after elafin gene transfer. Infect. Immun. 73:3609–17.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Palffy R, et al. (2006) Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 13:101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Jacobsen F, et al. (2005) Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther. 12:1494–502.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2009

Authors and Affiliations

  • Roland Pálffy
    • 1
    • 2
  • Roman Gardlík
    • 1
    • 2
  • Michal Behuliak
    • 1
    • 2
  • Ludevit Kadasi
    • 3
  • Jan Turna
    • 3
  • Peter Celec
    • 1
    • 2
    • 3
  1. 1.BiomeD Research and Publishing GroupBratislavaSlovak Republic
  2. 2.Institute of Pathophysiology, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  3. 3.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic

Personalised recommendations