Molecular Medicine

, Volume 14, Issue 11–12, pp 724–730 | Cite as

Inhibition of COX 1 and 2 prior to Renal Ischemia/Reperfusion Injury Decreases the Development of Fibrosis

  • Carla Q. Feitoza
  • Giselle M. Gonçalves
  • Patricia Semedo
  • Marcos A. Cenedeze
  • Hélady S. Pinheiro
  • Felipe Caetano Beraldo
  • Oscar Fernando
  • Pavão dos Santos
  • Vicente de Paula A. Teixeira
  • Marlene A. dos Reis
  • Marilda Mazzali
  • Alvaro Pacheco-Silva
  • Niels Olsen Saraiva Câmara
Research Article


Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients. Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX 1 and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX 1 and 2 in the development of fibrosis by performing a COX 1 and 2 blockade immediately before IRI. We subjected C57Bl/6 male mice to 60 min of unilateral renal pedicle occlusion. Prior to surgery mice were either treated with indomethacin (IMT) at days −1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-polymerase chain reaction for expression of transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor a (TNF-α), interleukin (IL)-1β, IL-10, heme oxygenase 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen I, and bone morphogenic protein 7 (BMP-7). To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle. Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-β, MCP-1, TNF-α, IL-1-β, vimentin, collagen I, CTGF, and IL-10 mRNA (all P < 0.05). Moreover, HO-1 mRNA was increased in animals pretreated with IMT (P < 0.05). Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did not reach statistical significance when compared with control expression levels. The blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.



This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa of São Paulo (Grant numbers: 04/08311-4, 04/13449-7, 06/03982-5, and 07/07139-3).


  1. 1.
    Molitoris BA. (1991) New insights into the cell biology of ischemic acute renal failure. J. Am. Soc. Nephrol. 1:1263–70.PubMedGoogle Scholar
  2. 2.
    Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. (2003) The natural history of chronic allograft nephropathy. N. Engl. J. Med. 349:2326–33.CrossRefGoogle Scholar
  3. 3.
    Feitoza CQ et al. (2007) A role for HO-1 in renal function impairment in animals subjected to ischemic and reperfusion injury and treated with immunosuppressive drugs. Transplant Proc. 39:424–6.CrossRefGoogle Scholar
  4. 4.
    Jaeschke H, Farhood A. (1991) Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am. J. Physiol. 260: G355–62.CrossRefGoogle Scholar
  5. 5.
    Colletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM, Campbell DA Jr. (1990) Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J. Clin. Invest. 85:1936–43.CrossRefGoogle Scholar
  6. 6.
    Karasawa A, Guo JP, Ma XL, Tsao PS, Lefer AM. (1991) Protective actions of a leukotriene B4 antagonist in splanchnic ischemia and reperfusion in rats. Am. J. Physiol. 261: G191–8.PubMedGoogle Scholar
  7. 7.
    Harris RC. (2000) Cyclooxygenase-2 in the kidney. J. Am. Soc. Nephrol. 11:2387–94.PubMedGoogle Scholar
  8. 8.
    Hausknecht B, Voelkl S, Riess R, Gauer S, Goppelt-Struebe M. (2003) Expression of cyclooxygenase-2 in biopsies obtained from human transplanted kidneys undergoing rejection. Transplantation 76:109–14.CrossRefGoogle Scholar
  9. 9.
    Feitoza CQ et al. (2005) Cyclooxygenase 1 and/or 2 blockade ameliorates the renal tissue damage triggered by ischemia and reperfusion injury. Int. Immunopharmacol. 5:79–84.CrossRefGoogle Scholar
  10. 10.
    Feitoza CQ, Sanders H, Cenedeze M, Camara NO, Pacheco-Silva A. (2002) Pretreatment with indomethacin protects from acute renal failure following ischemia-reperfusion injury. Transplant Proc. 34:2979–80.CrossRefGoogle Scholar
  11. 11.
    Burne-Taney MJ, Yokota N, Rabb H. (2005) Persistent renal and extrarenal immune changes after severe ischemic injury. Kidney Int. 67:1002–9.CrossRefGoogle Scholar
  12. 12.
    Friedewald JJ, Rabb H. (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int. 66:486–91.CrossRefGoogle Scholar
  13. 13.
    Azuma H, Nadeau K, Takada M, Mackenzie HS, Tilney NL. (1997) Cellular and molecular predictors of chronic renal dysfunction after initial ischemia/reperfusion injury of a single kidney. Transplantation 64:190–7.CrossRefGoogle Scholar
  14. 14.
    Williams P, Lopez H, Britt D, Chan C, Ezrin A, Hottendorf R. (1997) Characterization of renal ischemia-reperfusion injury in rats. J. Pharmacol. Toxicol. Methods 37:1–7.CrossRefGoogle Scholar
  15. 15.
    Remuzzi G, Bertani T. (1998) Pathophysiology of progressive nephropathies. N. Engl. J. Med. 339:1448–56.CrossRefGoogle Scholar
  16. 16.
    Clarkson MR, Gupta S, Murphy M, Martin F, Godson C, Brady HR. (1999) Connective tissue growth factor: a potential stimulus for glomerulosclerosis and tubulointerstitial fibrosis in progressive renal disease. Curr. Opin. Nephrol. Hypertens. 8:543–8.CrossRefGoogle Scholar
  17. 17.
    Ito Y et al. (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 53:853–861.CrossRefGoogle Scholar
  18. 18.
    Nakatsuji S, Yamate J, Sakuma S. (1998) Relationship between vimentin expressing renal tubules and interstitial fibrosis in chronic progressive nephropathy in aged rats. Virchows Arch. 433:359–67.CrossRefGoogle Scholar
  19. 19.
    Chai Q, Krag S, Chai S, Ledet T, Wogensen L. (2003) Localisation and phenotypical characterisation of collagen-producing cells in TGF-beta 1-induced renal interstitial fibrosis. Histochem. Cell Biol. 119:267–80.PubMedGoogle Scholar
  20. 20.
    Zeisberg M et al. (2001) Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am. J. Pathol. 159:1313–21.CrossRefGoogle Scholar
  21. 21.
    Cooker LA et al. (2007) TNF-αlpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am. J. Physiol. Renal Physiol. 293: F157–65.CrossRefGoogle Scholar
  22. 22.
    Hogaboam CM, Steinhauser ML, Chensue SW, Kunkel SL. (1998) Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int. 54:2152–9.CrossRefGoogle Scholar
  23. 23.
    Kondo F, Kondo Y, Gomez-Vargas M, Ogawa N. (1998) Indomethacin inhibits delayed DNAfragmentation of hippocampal CA1 pyramidal neurons after transient forebrain ischemia in gerbils. Brain Res. 791:352–6.CrossRefGoogle Scholar
  24. 24.
    Ko JK, Tang F, Cho CH. (1997) Co-regulation of mucosal prostanoids and substance P by in-domethacin in rat stomachs. Life Sci. 60:PL 277–81.CrossRefGoogle Scholar
  25. 25.
    Mazzali M, Jefferson JA, Ni Z, Vaziri ND, Johnson RJ. (2003) Microvascular and tubulointerstitial injury associated with chronic hypoxia-induced hypertension. Kidney Int. 63:2088–93.CrossRefGoogle Scholar
  26. 26.
    Yokota N, Burne-Taney M, Racusen L, Rabb H. (2003) Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 285:F319–25.CrossRefGoogle Scholar
  27. 27.
    Marques VP et al. (2006) Influence of TH1/TH2 switched immune response on renal ischemia-reperfusion injury. Nephron Exp. Nephrol. 104:e48–56.CrossRefGoogle Scholar
  28. 28.
    Okada H, Danoff TM, Kalluri R, Neilson EG. (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 273:F563–74.CrossRefGoogle Scholar
  29. 29.
    Mazzali M et al. (2002) Effects of cyclosporine in osteopontin null mice. Kidney Int. 62:78–85.CrossRefGoogle Scholar
  30. 30.
    Badid C et al. (2002) Interstitial expression of alpha-SMA: an early marker of chronic renal allograft dysfunction. Nephrol. DM. Transplant. 17:1993–8.CrossRefGoogle Scholar
  31. 31.
    Bottinger EP. (2007) TGF-beta in renal injury and disease. Semin. Nephrol. 27:309–20.CrossRefGoogle Scholar
  32. 32.
    van Es A, Hermans J, van Bockel JH, Persijn GG, van Hooff JP, de Graeff J. (1983) Effect of warm ischemia time and HLA (A and B) matching on renal cadaveric graft survival and rejection episodes. Transplantation 36:255–8.CrossRefGoogle Scholar
  33. 33.
    Zeisberg M, Soubasakos MA, Kalluri R. (2005) Animal models of renal fibrosis. Methods Mol. Med. 117:261–72.PubMedGoogle Scholar
  34. 34.
    Kalluri R, Sukhatme VP. (2000) Fibrosis and angiogenesis. Curr. Opin. Nephrol. Hypertens. 9:413–8.CrossRefGoogle Scholar
  35. 35.
    Okada H, Strutz F, Danoff TM, Kalluri R, Neilson EG. (1996) Possible mechanisms of renal fibrosis. Contrib. Nephrol. 118:147–54.CrossRefGoogle Scholar
  36. 36.
    Yokoyama H, Wada T, Furuichi K. (2003) Chemokines in renal fibrosis. Contrib. Nephrol. 139:66–89.CrossRefGoogle Scholar
  37. 37.
    Furuichi K, Wada T, Yokoyama H, Kobayashi KI. (2002) Role of Cytokines and Chemokines in Renal Ischemia-Reperfusion Injury. Drug News Perspect. 15:477–82.CrossRefGoogle Scholar
  38. 38.
    Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M. (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer: observations in vitro and in vivo. Cells Tissues Organs 185:191–203.CrossRefGoogle Scholar
  39. 39.
    Bravo J et al. (2003) Vimentin and heat shock protein expression are induced in the kidney by angiotensin and by nitric oxide inhibition. Kidney Int. Suppl. S46-51.CrossRefGoogle Scholar
  40. 40.
    Ruster M, Sperschneider H, Funfstuck R, Stein G, Grone HJ. (2004) Differential expression of beta-chemokines MCP-1 and RANTES and their receptors CCR1, CCR2, CCR5 in acute rejection and chronic allograft nephropathy of human renal allografts. Clin. Nephrol. 61:30–9.CrossRefGoogle Scholar
  41. 41.
    Gloria MA, Cenedeze MA, Pacheco-Silva A, Camara NO. (2006) The blockade of cyclooxygenases-1 and -2 reduces the effects of hypoxia on endothelial cells. Braz. J. Med. Biol. Res. 39:1189–96.CrossRefGoogle Scholar
  42. 42.
    Lonnemann G, Shapiro L, Engler-Blum G, Muller GA, Koch KM, Dinarello CA. (1995) Cytokines in human renal interstitial fibrosis; I, Interleukin-1 is a paracrine growth factor for cultured fibrosis-derived kidney fibroblasts. Kidney Int. 47:837–44.CrossRefGoogle Scholar
  43. 43.
    Stanimirovic D, Shapiro A, Wong J, Hutchison J, Durkin J. (1997) The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J. Neuroimmunol. 76:193–205.CrossRefGoogle Scholar
  44. 44.
    Stahl PJ, Felsen D. (2001) Transforming growth factor-beta, basement membrane, and epithelial-mesenchymal transdifferentiation: implications for fibrosis in kidney disease. Am. J. Pathol. 159:1187–92.CrossRefGoogle Scholar
  45. 45.
    Crisman JM, Richards LL, Valach DP, Franzoni DF, Diamond JR. (2001) Chemokine expression in the obstructed kidney. Exp. Nephrol. 9:241–8.CrossRefGoogle Scholar
  46. 46.
    Pichler R et al. (1994) Tubulointerstitial disease in glomerulonephritis. Potential role of osteopontin (uropontin). Am. J. Pathol. 144:915–26.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Eddy AA. (1995) Interstitial macrophages as mediators of renal fibrosis. Exp. Nephrol. 3:76–9.PubMedGoogle Scholar
  48. 48.
    Diamond JR, Kees-Folts D, Ricardo SD, Pruznak A, Eufemio M. (1995) Early and persistent up-regulated expression of renal cortical osteopontin in experimental hydronephrosis. Am. J. Pathol. 146:1455–66.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ophascharoensuk V et al. (1999) Obstructive uropathy in the mouse: role of osteopontin in interstitial fibrosis and apoptosis. Kidney Int. 56:571–80.CrossRefGoogle Scholar
  50. 50.
    Zeisberg M et al. (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol 285: F1060–7.CrossRefGoogle Scholar
  51. 51.
    Terzi F et al. (1997) Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin. Am. J. Pathol. 150:1361–71.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Nguyen TQ, Goldschmeding R. (2008) Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm Res. 25:2416–26.CrossRefGoogle Scholar
  53. 53.
    Damiao MJ et al. (2007) The effects of rapamycin in the progression of renal fibrosis. Transplant Proc 39:457–9.CrossRefGoogle Scholar
  54. 54.
    Yokoi H et al. (2004) Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 15:1430–40.CrossRefGoogle Scholar
  55. 55.
    Deng J et al. (2001) Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 60:2118–28.CrossRefGoogle Scholar
  56. 56.
    Takahira R, Yonemura K, Fujise Y, Hishida A. (2001) Dexamethasone attenuates neutrophil infiltration in the rat kidney in ischemia/reperfusion injury: the possible role of nitroxyl. Free Radic. Biol. Med. 31:809–15.CrossRefGoogle Scholar
  57. 57.
    Salahudeen AK, Haider N, May W. (2004) Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int. 65:713–8.CrossRefGoogle Scholar
  58. 58.
    Harizi H, Gualde N. (2006) Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell Mol. Immunol. 3:271–7.PubMedGoogle Scholar
  59. 59.
    Treffkorn L, Scheibe R, Maruyama T, Dieter P. (2004) PGE2 exerts its effect on the LPS-induced release of TNF-αlpha, ET-1, IL-1alpha, IL-6 and IL-10 via the EP2 and EP4 receptor in rat liver macrophages. Prostaglandins Other Lipid Mediat. 74:113–23.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Carla Q. Feitoza
    • 1
    • 4
  • Giselle M. Gonçalves
    • 1
    • 4
  • Patricia Semedo
    • 1
    • 4
  • Marcos A. Cenedeze
    • 1
    • 4
  • Hélady S. Pinheiro
    • 2
    • 4
  • Felipe Caetano Beraldo
    • 3
    • 4
  • Oscar Fernando
    • 4
  • Pavão dos Santos
    • 1
    • 4
  • Vicente de Paula A. Teixeira
    • 3
    • 4
  • Marlene A. dos Reis
    • 3
    • 4
  • Marilda Mazzali
    • 3
    • 4
  • Alvaro Pacheco-Silva
    • 1
    • 4
  • Niels Olsen Saraiva Câmara
    • 1
    • 4
    • 5
  1. 1.Laboratory of Experimental and Clinical Immunology, Nephrology DivisionFederal University of São PauloSão PauloBrazil
  2. 2.Nephrology DivisionFederal University of Juiz de ForaMinas GeraisBrazil
  3. 3.PathologyFederal University of Triângulo MineiroUberaba, Minas GeraisBrazil
  4. 4.Nephrology DivisionState University of CampinasCampinas, São PauloBrazil
  5. 5.Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences IVUniversity of São PauloSão PauloBrazil

Personalised recommendations