Molecular Medicine

, Volume 14, Issue 7–8, pp 493–501 | Cite as

Sex Steroids and Stem Cell Function

  • Rinki Ray
  • Nathan M. Novotny
  • Paul R. Crisostomo
  • Tim Lahm
  • Aaron Abarbanell
  • Daniel R. Meldrum
Review Article


Gender dimorphisms exist in the pathogenesis of a variety of cardiovascular, cardiopulmonary, neurodegenerative, and endocrine disorders. Estrogens exert immense influence on myocardial remodeling following ischemic insult, partially through paracrine growth hormone production by bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells. Estrogens also facilitate the mobilization of endothelial progenitor cells to the ischemic myocardium and enhance neovascularization at the ischemic border zone. Moreover, estrogens limit pathological myocardial remodeling through the inhibitory effects on the proliferation of the cardiac fibroblasts. Androgens also may stimulate endothelial progenitor cell migration from the bone marrow, yet the larger role of androgens in disease pathogenesis is not well characterized. The beneficial effects of sex steroids include alteration of lipid metabolism in preadipocytes, modulation of bone metabolism and skeletal maturation, and prevention of osteoporosis through their effects on osteogenic precursors. In an example of sex steroid-specific effects, neural stem cells exhibit enhanced proliferation in response to estrogens, whereas androgens mediate inhibitory effects on their proliferation. Although stem cells can offer significant therapeutic benefits in various cardiovascular, neurodegenerative, endocrine disorders, and disorders of bone metabolism, a greater understanding of sex hormones on diverse stem cell populations is required to improve their ultimate clinical efficacy. In this review, we focus on the effects of estrogen and testosterone on various stem and progenitor cell types, and their relevant intracellular mechanisms.



This work was supported in part by NIH R01GM070628, NIH R01HL085595, NIH K99/R00 HL0876077, NIH F32HL085982, AHA Grant-in-aid, and AHA Post-doctoral Fellowship 0725663Z.


  1. 1.
    Kher A et al. (2005) Sex differences in the myocardial inflammatory response to acute injury. Shock. 23:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Deitch EA et al. (2007) Hormonally active women tolerate shock-trauma better than do men: a prospective study of over 4000 trauma patients. Ann. Surg. 246:447–53; discussion 453–5.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Choudhry MA et al. (2005) Gender differences in acute response to trauma-hemorrhage. Shock. 24 Suppl 1:101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Choudhry MA, Bland KI, Chaudry IH. (2006) Gender and susceptibility to sepsis following trauma. Endocr. Metab. Immune Disord. Drug Targets. 6:127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lahm T et al. (2007) Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: the effects of sex and menstrual cycle. Am. J. Physiol. Endocrinol. Metab. 293:E865–71.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Deitch EA et al. (2008) Resistance of the female, as opposed to the male, intestine to I/R-mediated injury is associated with increased resistance to gut-induced distant organ injury. Shock. 29:78–83.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Schwendimann RN, Alekseeva N. (2007) Gender issues in multiple sclerosis. Int. Rev. Neurobiol. 79:377–92.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Shulman LM. (2007) Gender differences in Parkinson’s disease. Gend. Med. 4:8–18.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lobo RA. (2007) Menopause and stroke and the effects of hormonal therapy. Climacteric. 10 Suppl 2:27–31.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Eugene D, Djemli A, Van Vliet G. (2005) Sexual dimorphism of thyroid function in newborns with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 90:2696–700.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Feng W et al. (2007) Prevention of osteoporosis and hypogonadism by allogeneic ovarian transplantation in conjunction with intra-bone marrow-bone marrow transplantation. Transplantation. 84:1459–66.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zhou S et al. (2001) Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J. Cell. Biochem. Suppl. Suppl 36:144–55.CrossRefGoogle Scholar
  13. 13.
    DiSilvio L, Jameson J, Gamie Z, Giannoudis PV, Tsiridis E. (2006) In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury. 37 Suppl 3:S33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Vaccarino V, Krumholz HM, Berkman LF, Horwitz RI. (1995) Sex differences in mortality after myocardial infarction. Is there evidence for an increased risk for women? Circulation. 91: 1861–71.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hodis HN, Mack WJ. (2002) Atherosclerosis imaging methods: assessing cardiovascular disease and evaluating the role of estrogen in the prevention of atherosclerosis. Am. J. Cardiol. 89:19E–27E; discussion 27E.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Paroo Z, Haist JV, Karmazyn M, Noble EG. (2002) Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ. Res. 90:911–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Herrington DM et al. (2000) Effects of estrogen replacement on the progression of coronaryartery atherosclerosis. N. Engl. J. Med. 343: 522–529.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Crisostomo PR et al. (2006) Sex dimorphisms in activated mesenchymal stem cell function. Shock. 26:571–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Crisostomo et al. (2007) Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: role of the 55 kDa TNF receptor (TNFR1). J. Mol. Cell. Cardiol. 42:142–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pitcher JM et al. (2006) Endogenous estrogen mediates a higher threshold for endotoxin-induced myocardial protection in females. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R27–33.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wang M, Crisostomo P, Wairiuko GM, Meldrum DR. (2006) Estrogen receptor-alpha mediates acute myocardial protection in females. Am. J. Physiol. Heart Circ. Physiol. 290:H2204–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Baker L et al. (2003) The role of estrogen in cardiovascular disease. J. Surg. Res. 115:325–44.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wang M et al. (2005) Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 288:H221–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nelson NT et al. (2006) Does endogenous testosterone mediate the lower preconditioning threshold in males? J. Surg. Res. 131:86–90.CrossRefGoogle Scholar
  25. 25.
    Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Meldrum DR. (2006) Brief exposure to exogenous testosterone increases death signaling and adversely affects myocardial function after ischemia. Am. J. Physiol Regul Integr. Comp. Physiol. 290:R1168–74.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nam UH et al. (2007) The effect of chronic exogenous androgen on myocardial function following acute ischemia-reperfusion in hosts with different baseline levels of sex steroids. J. Surg. Res. 142:113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Meldrum DR. (2006) Estrogen increases protective proteins following trauma and hemorrhage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R809–11.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cavasin MA, Tao Z, Menon S, Yang XP. (2004) Gender differences in cardiac function during early remodeling after acute myocardial infarction in mice. Life Sci. 75:2181–92.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cavasin MA, Tao ZY, Yu AL, Yang XP. (2006) Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. Am. J. Physiol. Heart Circ. Physiol. 290:H2043–50.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Pelzer T et al. (2005) The estrogen receptor-alpha agonist 16alpha-LE2 inhibits cardiac hypertrophy and improves hemodynamic function in estrogen-deficient spontaneously hypertensive rats. Cardiovasc. Res. 67:604–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Booth EA, Obeid NR, Lucchesi BR. (2005) Activation of estrogen receptor-alpha protects the in vivo rabbit heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 289: H2039–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Shearman AM et al. (2003) Association between estrogen receptor alpha gene variation and cardiovascular disease. JAMA. 290:2263–70.PubMedCrossRefGoogle Scholar
  33. 33.
    McMurray RW, Ndebele K, Hardy KJ, Jenkins JK. (2001) 17-beta-estradiol suppresses IL-2 and IL-2 receptor. Cytokine. 14:324–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Crane-Godreau MA, Wira CR. (2005) Effects of estradiol on lipopolysaccharide and Pam3Cys stimulation of CCL20/macrophage inflammatory protein 3 alpha and tumor necrosis factor alpha production by uterine epithelial cells in culture. Infect. Immun. 73:4231–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    de Witte T, Suciu S, Brand R, Muus P, Kroger N. (2007) Autologous stem cell transplantation in myelodysplastic syndromes. Semin. Hematol. 44:274–277.PubMedCrossRefGoogle Scholar
  36. 36.
    Breems DA, Lowenberg B. (2007) Acute myeloid leukemia and the position of autologous stem cell transplantation. Semin. Hematol. 44:259–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Crisostomo PR, Meldrum DR. (2007) Stem cell delivery to the heart: clarifying methodology and mechanism. Crit. Care Med. 35:2654–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Mangi AA et al. (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9:1195–201.PubMedCrossRefGoogle Scholar
  39. 39.
    Assmus B et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 106:3009–17.PubMedCrossRefGoogle Scholar
  40. 40.
    Erbs S et al. (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation. 116:366–74.CrossRefGoogle Scholar
  41. 41.
    Chang CY et al. (2006) Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertil. Steril. 85 Suppl 1:1195–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Han HJ, Heo JS, Lee YJ. (2006) Estradiol-17beta stimulates proliferation of mouse embryonic stem cells: involvement of MAPKs and CDKs as well as protooncogenes. Am. J. Physiol. Cell Physiol. 290:C1067–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Hong SH et al. (2004) Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Mol. Cells. 18:320–5.PubMedGoogle Scholar
  44. 44.
    Hamada H et al. (2006) Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation. 114:2261–70.PubMedCrossRefGoogle Scholar
  45. 45.
    Marin-Husstege M, Muggironi M, Raban D, Skoff RP, Casaccia-Bonnefil P. (2004) Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones. Dev. Neurosci. 26:245–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Bremner WJ, Millar MR, Sharpe RM, Saunders PT. (1994) Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology. 135:1227–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Crisostomo PR et al. (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B-but not JNK-dependent mechanism. Am. J. Physiol. Cell. Physiol. 294:C675–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Crisostomo PR et al. (2007) In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery. 142:215–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang Q et al (2006) Temporal expression of estrogen receptor alpha in rat bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 347:117–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Leskela HV et al. (2006) Estrogen receptor alpha genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts. Bone. 39:1026–34.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fawell SE et al. (1990) Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc. Natl. Acad. Sci. U. S. A. 87:6883–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hong L, Colpan A, Peptan IA. (2006) Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng. 12:2747–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Dai Z et al. (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine. 14:806–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Song LH et al. (2006) Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol. In Vitro. 20:915–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Pino AM et al. (2006) Aromatase activity of human mesenchymal stem cells is stimulated by early differentiation, vitamin D and leptin. J. Endocrinol. 191:715–25.PubMedCrossRefGoogle Scholar
  56. 56.
    Horner S, Pasternak G, Hehlmann R. (1997) A statistically significant sex difference in the number of colony-forming cells from human peripheral blood. Ann. Hematol. 74:259–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Aroviita P, Teramo K, Hiilesmaa V, Kekomaki R. (2005) Cord blood hematopoietic progenitor cell concentration and infant sex. Transfusion. 45: 613–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Kitamura D, Roes J, Kuhn R, Rajewsky K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 350:423–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J. (2005) Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J. Exp. Med. 202:561–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Oettinger MA, Schatz DG, Gorka C, Baltimore D. (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 248:1517–23.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mombaerts P et al. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 68: 869–77.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Medina KL, Strasser A, Kincade PW. (2000) Estrogen influences the differentiation, proliferation, and survival of early B-lineage precursors. Blood. 95:2059–67.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Thurmond TS et al. (2000) Role of estrogen receptor alpha in hematopoietic stem cell development and B lymphocyte maturation in the male mouse. Endocrinology. 141:2309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Smithson G, Couse JF, Lubahn DB, Korach KS, Kincade PW. (1998) The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis. J. Immunol. 161:27–34.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Xu R et al. (1999) A selective amplifier gene for tamoxifen-inducible expansion of hematopoietic cells. J. Gene Med. 1:236–44.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ. (1997) Androgens alter B cell development in normal male mice. Cell. Immunol. 182:99–104.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Erben RG, Eberle J, Stangassinger M. (2001) B lymphopoiesis is upregulated after orchiectomy and is correlated with estradiol but not testosterone serum levels in aged male rats. Horm. Metab. Res. 33:491–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Claustres M, Sultan C. (1986) Stimulatory effects of androgens on normal children’s bone marrow in culture: effects on BFU-E, CFU-E, and uropor-phyrinogen I synthase activity. Horm. Res. 23: 91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sullivan PS, Jackson CW, McDonald TP. (1995) Castration decreases thrombocytopoiesis and testosterone restores platelet production in castrated BALB/c mice: evidence that testosterone acts on a bipotential hematopoietic precursor cell. J. Lab. Clin. Med. 125:326–33.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim SW et al. (2005) Direct and indirect effects of androgens on survival of hematopoietic progenitor cells in vitro. J. Korean Med. Sci. 20:409–16.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Griffin M, Lee HW, Zhao L, Eghbali-Webb M. (2000) Gender-related differences in proliferative response of cardiac fibroblasts to hypoxia: effects of estrogen. Mol. Cell. Biochem. 215:21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Zhao X, Eghbali-Webb M. (2002) Gender-related differences in basal and hypoxia-induced activation of signal transduction pathways controlling cell cycle progression and apoptosis, in cardiac fibroblasts. Endocrine. 18:137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Dubey RK, Gillespie DG, Jackson EK, Keller PJ. (1998) 17Beta-estradiol, its metabolites, and progesterone inhibit cardiac fibroblast growth. Hypertension. 31:522–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Grohe C et al. (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett. 416:107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zhou L, Shao Y, Huang Y, Yao T, Lu LM. (2007) 17beta-estradiol inhibits angiotensin II-induced collagen synthesis of cultured rat cardiac fibroblasts via modulating angiotensin II receptors. Eur. J. Pharmacol. 567:186–92.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Watanabe T et al. (2003) 17 beta-estradiol inhibits cardiac fibroblast growth through both subtypes of estrogen receptor. Biochem. Biophys. Res. Commun. 311:454–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Stewart JAJr, Cashatt DO, Borck AC, Brown JE, Carver WE. (2006) 17beta-estradiol modulation of angiotensin II-stimulated response in cardiac fibroblasts. J. Mol. Cell. Cardiol. 41:97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Mercier I, Colombo F, Mader S, Calderone A. (2002) Ovarian hormones induce TGF-beta(3) and fibronectin mRNAs but exhibit a disparate action on cardiac fibroblast proliferation. Cardiovasc. Res. 53:728–39.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wang YJ, Lin MW, Wu SN, Sung RJ. (2007) The activation by estrogen receptor agonists of the BK(Ca)-channel in human cardiac fibroblasts. Biochem. Pharmacol. 73:1347–57.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hoetzer GL et al. (2007) Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. Am. J. Cardiol. 99:46–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Strehlow K et al. (2003) Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation. 107:3059–65.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Foresta C et al. (2007) Oestrogen stimulates endothelial progenitor cells via oestrogen receptor-alpha. Clin. Endocrinol. (Oxf). 67:520–5.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Ciulla MM et al. (2006) Endothelial colony forming capacity is related to C-reactive protein levels in healthy subjects. Curr. Neurovasc. Res. 3:99–106.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Iwakura A et al. (2006) Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation. 113:1605–14.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Heissig B et al. (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 109:625–37.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Imanishi T, Kobayashi K, Hano T, Nishio I. (2005) Effect of estrogen on differentiation and senescence in endothelial progenitor cells derived from bone marrow in spontaneously hypertensive rats. Hypertens. Res. 28:763–72.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Imanishi T, Hano T, Nishio I. (2005) Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J. Hypertens. 23:1699–706.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Foresta C et al. (2006) Reduced number of circulating endothelial progenitor cells in hypogonadal men. J. Clin. Endocrinol. Metab. 91:4599–602.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Foresta C et al. (2007) Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clin. Endocrinol. (Oxf). 68:284–9.PubMedPubMedCentralGoogle Scholar
  90. 90.
    D’Eon TM et al. (2005) Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J. Biol. Chem. 280:35983–91.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Jaubert AM et al. (2007) Nongenomic estrogen effects on nitric oxide synthase activity in rat adipocytes. Endocrinology. 148:2444–52.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Enerback S, Gimble JM. (1993) Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. Biochim. Biophys. Acta. 1169:107–25.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mayes JS, Watson GH. (2004) Direct effects of sex steroid hormones on adipose tissues and obesity. Obes. Rev. 5:197–216.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Joyner JM, Hutley LJ, Cameron DP. (2001) Estrogen receptors in human preadipocytes. Endocrine. 15:225–30.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Shinozaki S et al. (2007) Site-specific effect of estradiol on gene expression in the adipose tissue of ob/ob mice. Horm. Metab. Res. 39:192–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Bjorntorp P. (1991) Metabolic implications of body fat distribution. Diabetes Care. 14:1132–43.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Xu X, De Pergola G, Bjorntorp P. (1990) The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology. 126: 1229–34.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dieudonne MN, Pecquery R, Boumediene A, Leneveu MC, Giudicelli Y. (1998) Androgen receptors in human preadipocytes and adipocytes: regional specificities and regulation by sex steroids. Am. J. Physiol. 274:C1645–52.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    James RG, Krakower GR, Kissebah AH. (1996) Influence of androgenicity on adipocytes and precursor cells in female rats. Obes. Res. 4:463–70.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Bouloumie A, Valet P, Dauzats M, Lafontan M, Saulnier-Blache JS. (1994) In vivo upregulation of adipocyte alpha 2-adrenoceptors by androgens is consequence of direct action on fat cells. Am. J. Physiol. 267:C926–31.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Garcia E, Lacasa M, Agli B, Giudicelli Y, Lacasa D. (1999) Modulation of rat preadipocyte adipose conversion by androgenic status: involvement of C/EBPs transcription factors. J. Endocrinol. 161:89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Grumbach MM. (2000) Estrogen, bone, growth and sex: a sea change in conventional wisdom. J. Pediatr. Endocrinol. Metab. 13 Suppl 6:1439–55.Google Scholar
  103. 103.
    Modrowski D, Miravet L, Feuga M, Marie PJ. (1993) Increased proliferation of osteoblast precursor cells in estrogen-deficient rats. Am. J. Physiol. 264:E190–6.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Di Gregorio GB et al. (2001) Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17 beta-estradiol. J. Clin. Invest. 107:803–12.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Oreffo RO, Kusec V, Romberg S, Triffitt JT. (1999) Human bone marrow osteoprogenitors express estrogen receptor-alpha and bone morphogenetic proteins 2 and 4 mRNA during os-teoblastic differentiation. J. Cell. Biochem. 75:382–92.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gao Y et al. (2004) Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. Proc. Natl. Acad. Sci. U. S. A. 101: 16618–23.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cenci S et al. (2003) Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc. Natl. Acad. Sci. U. S. A. 100: 10405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Ohmori S, Kanda K, Kawano S, Kambe F, Seo H. (2001) Effects of estrogen on tail suspension-induced disuse atrophy in ovariectomized rats: evaluation of the expression of interleukin-6 mRNAin the femur. Environ. Med. 45:12–4.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Masiukiewicz US, Mitnick M, Gulanski BI, Insogna KL. (2002) Evidence that the IL-6/IL-6 soluble receptor cytokine system plays a role in the increased skeletal sensitivity to PTH in estrogen-deficient women. J. Clin. Endocrinol. Metab. 87:2892–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Jilka RL et al. (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 257:88–91.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ryan MR et al. (2005) An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proc. Natl. Acad. Sci. U. S. A. 102:16735–40.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. (2002) Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110:1643–50.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kodama I et al. (2004) Estrogen regulates the production of VEGF for osteoclast formation and activity in op/op mice. J. Bone Miner. Res. 19:200–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kang HY et al. (2004) Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3-E1 osteoblasts. J. Bone Miner. Res. 19:1181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kousteni S et al. (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell. 104:719–30.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Migliaccio A et al. (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. Embo. J. 19:5406–17.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Gori F, Hofbauer LC, Conover CA, Khosla S. (1999): Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology. 140:5579–86.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Chen Q, Kaji H, Kanatani M, Sugimoto T, Chihara K. (2004) Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm. Metab. Res. 36:674–8.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Hofbauer LC, Hicok KC, Chen D, Khosla S. (2002) Regulation of osteoprotegerin production by androgens and anti-androgens in human osteoblastic lineage cells. Eur. J. Endocrinol. 147:269–73.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Brannvall K, Korhonen L, Lindholm D. (2002) Estrogen-receptor-dependent regulation of neural stem cell proliferation and differentiation. Mol. Cell. Neurosci. 21:512–20.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Murashov AK, Pak ES, Hendricks WA, Tatko LM. (2004) 17beta-Estradiol enhances neuronal differentiation of mouse embryonic stem cells. FEBS Lett. 569:165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kishi Y et al. (2005) Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J. Neurosci. Res. 79:279–86.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Liao SL, Chen WY, Chen CJ. (2002) Estrogen attenuates tumor necrosis factor-alpha expression to provide ischemic neuroprotection in female rats. Neurosci. Lett. 330:159–62.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Segars JH, Driggers PH. (2002) Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes. Trends Endocrinol. Metab. 13:349–54.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Brannvall K, Bogdanovic N, Korhonen L, Lindholm D. (2005) 19-Nortestosterone influences neural stem cell proliferation and neurogenesis in the rat brain. Eur. J. Neurosci. 21:871–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Rinki Ray
    • 1
  • Nathan M. Novotny
    • 1
  • Paul R. Crisostomo
    • 1
  • Tim Lahm
    • 2
  • Aaron Abarbanell
    • 1
  • Daniel R. Meldrum
    • 1
    • 3
    • 4
    • 5
  1. 1.Department of SurgeryIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Pulmonary and Critical Care MedicineIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisUSA
  4. 4.Department of Center for ImmunobiologyIndiana University School of MedicineIndianapolisUSA
  5. 5.2017 Van Nuys Medical Science BuildingIndianapolisUSA

Personalised recommendations