Advertisement

Molecular Medicine

, Volume 14, Issue 5–6, pp 327–336 | Cite as

Molecular Events in the Cardiomyopathy of Sepsis

  • Michael A. Flierl
  • Daniel Rittirsch
  • Markus S. Huber-Lang
  • J. Vidya Sarma
  • Peter A. Ward
Review Article

Abstract

Septic cardiomyopathy is a well-described complication of severe sepsis and septic shock. However, the interplay of its underlying mechanisms remains enigmatic. Consequently, we constantly add to our pathophysiological understanding of septic cardiomyopathy. Various cardiosuppressive mediators have been discovered, as have multiple molecular mechanisms (alterations of myocardial calcium homeostasis, mitochondrial dysfunction, and myocardial apoptosis) that may be involved in myocardial dysfunction during sepsis. Finally, the detrimental roles of nitric oxide and peroxynitrite have been unraveled. Here, we describe our present understanding of systemic, supracellular, and cellular molecular mechanisms involved in sepsis-induced myocardial suppression.

Notes

Acknowledgments

We are indebted to Robin Kunkel for her excellent assistance in the composition of the illustrations. We also thank Beverly Schumann and Sue Scott for their assistance in the preparation of this manuscript.

This study was supported by NIH grants GM29507, GM61656, and HL-31963 (P.A.W.) and Deutsche Forschungsgemeinschaft grants DFG HU 823/2-2 and HU 823/2-3 (M.H.-L).

References

  1. 1.
    MacLean LD, Mulligan WG, McLean AP, Duff JH. (1967) Patterns of septic shock in man: a detailed study of 56 patients. Ann. Surg. 166:543–62.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Waisbren BA. (1951) Bacteremia due to gramnegative bacilli other than the Salmonella; a clinical and therapeutic study. AMA. Arch. Intern. Med. 88:467–88.CrossRefPubMedGoogle Scholar
  3. 3.
    Rabuel C, Mebazaa A. (2006) Septic shock: a heart story since the 1960s. Intensive. Care. Med. 32:799–807.CrossRefPubMedGoogle Scholar
  4. 4.
    Clowes GH Jr, Vucinic M, Weidner MG. (1966) Circulatory and metabolic alterations associated with survival or death in peritonitis: clinical analysis of 25 cases. Ann. Surg. 163:866–85.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Maclean LD, Spink WW, Visscher MB, Weil MH. (1956) Studies on the circulatory changes in the dog produced by endotoxin from gram-negative microorganisms. J. Clin. Invest. 35:1191–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Postel J, Schloerb PR. (1977) Cardiac depression in bacteremia. Ann. Surg. 186:74–82.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wilson RF, Sarver EJ, LeBlanc PL. (1971) Factors affecting hemodynamics in clinical shock with sepsis. Ann. Surg. 174:939–43.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Packman MI, Rackow EC. (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit. Care Med. 11:165–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gunnar RM, Loeb HS, Winslow EJ, Blain C, Robinson J. (1973) Hemodynamic measurements in bacteremia and septic shock in man. J. Infect. Dis. 128(Suppl):295–8.CrossRefGoogle Scholar
  10. 10.
    Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S, Gunnar RM. (1973) Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am. J. Med. 54:421–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Krausz MM, Perel A, Eimerl D, Cotev S. (1977) Cardiopulmonary effects of volume loading in patients in septic shock. Ann. Surg. 185:429–34.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit. Care Med. 15:923–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Parker MM, et al. (1984) Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med. 100:483–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Ellrodt AG, et al. (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am. Heart. J. 110:402–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Natanson C, et al. (1989) Role of endotoxemia in cardiovascular dysfunction and mortality: Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J. Clin. Invest. 83:243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Natanson C, et al. (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J. Exp. Med. 169:823–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Jones AE, Craddock PA, Tayal VS, Kline JA. (2005) Diagnostic accuracy of left ventricular function for identifying sepsis among emergency department patients with nontraumatic symptomatic undifferentiated hypotension. Shock 24:513–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Jardin F, et al. (1999) Persistent preload defect in severe sepsis despite fluid loading: a longitudinal echocardiographic study in patients with septic shock. Chest 116:1354–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. (1997) Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 23:553–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Charpentier J, et al. (2004) Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit. Care Med. 32:660–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. (1986) The coronary circulation in human septic shock. Circulation 73:637–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Dhainaut JF, et al. (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu AH. (2001) Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 27:959–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Lanone S, et al. (2000) Muscular contractile failure in septic patients: role of the inducible nitric oxide synthase pathway. Am. J. Respir. Crit. Care Med. 162:2308–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Groeneveld AB, et al. (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc. Res. 25:80–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Solomon MA, et al. (1994) Myocardial energy metabolism and morphology in a canine model of sepsis. Am. J. Physiol. 266:H757–68.PubMedGoogle Scholar
  28. 28.
    Madorin WS, et al. (2004) Cardiac myocytes activated by septic plasma promote neutrophil transendothelial migration: role of platelet-activating factor and the chemokines LIX and KC. Circ. Res. 94:944–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O. (2006) Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit. Care Med. 34:127–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu P, et al. (1997) Myocardial collagen changes and edema in rats with hyperdynamic sepsis. Crit. Care Med. 25:657–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Hotchkiss RS, et al. (1991) Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F]fluoromisonidazole. Am. J. Physiol. 261:R965–72.PubMedGoogle Scholar
  32. 32.
    Wangensteen SL, Geissinger WT, Lovett WL, Glenn TM, Lefer AM. (1971) Relationship between splanchnic blood flow and a myocardial depressant factor in endotoxin shock. Surgery 69:410–8.PubMedGoogle Scholar
  33. 33.
    Parrillo JE, et al. (1985) A circulating myocardial depressant substance in humans with septic shock: septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J. Clin. Invest. 76:1539–53.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kumar A, et al. (1996) Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J. Exp. Med. 183:949–58.CrossRefPubMedGoogle Scholar
  35. 35.
    Finkel MS, et al. (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–9.CrossRefGoogle Scholar
  36. 36.
    Niederbichler AD, et al. (2006) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J. Exp. Med. 203:53–61.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Carlson DL, Willis MS, White DJ, Horton JW, Giroir BP. (2005) Tumor necrosis factor-alpha-induced caspase activation mediates endotoxin-related cardiac dysfunction. Crit. Care Med. 33:1021–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Garner LB, et al. (2003) Macrophage migration inhibitory factor is a cardiac-derived myocardial depressant factor. Am. J. Physiol. Heart. Circ. Physiol. 285:H2500–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Maass DL, White J, Horton JW. (2002) IL-1beta and IL-6 act synergistically with TNF-alpha to alter cardiac contractile function after burn trauma. Shock 18:360–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Gao H, Neff T, Ward P.A. (2006) Regulation of lung inflammation in the model of IgG immune-complex injury. Annu. Rev. Pathol. Mech. Dis. 1:215–42.CrossRefGoogle Scholar
  41. 41.
    Huber-Lang MS, et al. (2002) Complement-induced impairment of innate immunity during sepsis. J. Immunol. 169:3223–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Huber-Lang M, et al. (2001) Role of C5a in multiorgan failure during sepsis. J. Immunol. 166:1193–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Riedemann NC, et al. (2002) C5a receptor and thymocyte apoptosis in sepsis. FASEB J. 16:887–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Laudes IJ, et al. (2002) Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am. J. Pathol. 160:1867–75.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Abi-Gerges N, et al. (1999) Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am. J. Respir. Crit. Care. Med. 160:1196–204.CrossRefPubMedGoogle Scholar
  46. 46.
    Mebazaa A, et al. (2001) Activation of cardiac endothelium as a compensatory component in endotoxin-induced cardiomyopathy: role of endothelin, prostaglandins, and nitric oxide. Circulation 104:3137–44.CrossRefPubMedGoogle Scholar
  47. 47.
    Kreymann G, et al. (1993) Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit. Care Med. 21:1012–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Rudiger A, Singer M. (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 35:1599–608.CrossRefPubMedGoogle Scholar
  49. 49.
    Boekstegers P, Weidenhofer S, Kapsner T, Werdan K. (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit. Care Med. 22:640–50.CrossRefPubMedGoogle Scholar
  50. 50.
    Boekstegers P, Weidenhofer S, Pilz G, Werdan K. (1991) Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection 19:317–23.CrossRefPubMedGoogle Scholar
  51. 51.
    Rossi MA, Celes MR, Prado CM, Saggioro FP. (2007) Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock 27:10–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Levy RJ, et al. (2005) Evidence of myocardial hibernation in the septic heart. Crit. Care Med. 33:2752–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Sharshar T, et al. (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–805.CrossRefPubMedGoogle Scholar
  54. 54.
    Sharshar T, et al. (2004) The neuropathology of septic shock. Brain Pathol. 14:21–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Annane D, et al. (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am. J. Respir. Crit. Care Med. 160:458–65.CrossRefPubMedGoogle Scholar
  56. 56.
    Korach M, et al. (2001) Cardiac variability in critically ill adults: influence of sepsis. Crit. Care Med. 29:1380–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Schmidt HB, Werdan K, Muller-Werdan U. (2001) Autonomic dysfunction in the ICU patient. Curr. Opin. Crit. Care 7:314–22.CrossRefPubMedGoogle Scholar
  58. 58.
    Borovikova LV, et al. (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–62.CrossRefPubMedGoogle Scholar
  59. 59.
    Huston JM, et al. (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med. 35: 2762–8.PubMedGoogle Scholar
  60. 60.
    Tracey KJ. (2002) The inflammatory reflex. Nature 420:853–9.CrossRefGoogle Scholar
  61. 61.
    Zhong J, Hwang TC, Adams HR, Rubin LJ. (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am. J. Physiol. 273:H2312–24.PubMedGoogle Scholar
  62. 62.
    Liu S, Schreur KD. (1995) G protein-mediated suppression of L-type Ca2+ current by interleukin-1 beta in cultured rat ventricular myocytes. Am. J. Physiol. 268:C339–49.CrossRefPubMedGoogle Scholar
  63. 63.
    Lew WY, Yasuda S, Yuan T, Hammond HK. (1996) Endotoxin-induced cardiac depression is associated with decreased cardiac dihydropyridine receptors in rabbits. J. Mol. Cell Cardiol. 28:1367–71.CrossRefPubMedGoogle Scholar
  64. 64.
    Tavernier B, Garrigue D, Boulle C, Vallet B, Adnet P. (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc. Res. 38:472–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Tavernier B, et al. (2001) Phosphorylation-dependent alteration in myofilament Ca2+ sensitivity but normal mitochondrial function in septic heart. Am. J. Respir. Crit. Care Med. 163:362–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Shah AM. (1996) Paracrine modulation of heart cell function by endothelial cells. Cardiovasc. Res. 31:847–67.CrossRefPubMedGoogle Scholar
  67. 67.
    Dong LW, Wu LL, Ji Y, Liu MS. (2001) Impairment of the ryanodine-sensitive calcium release channels in the cardiac sarcoplasmic reticulum and its underlying mechanism during the hypodynamic phase of sepsis. Shock 16:33–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Hagemann D, Xiao RP. (2002) Dual site phospholamban phosphorylation and its physiological relevance in the heart. Trends Cardiovasc. Med. 12:51–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Vangheluwe P, Raeymaekers L, Dode L, Wuytack F. (2005) Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 38:291–302.CrossRefPubMedGoogle Scholar
  70. 70.
    Wu LL, Ji Y, Dong LW, Liu MS. (2001) Calcium uptake by sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat heart. Shock 15:49–55.PubMedGoogle Scholar
  71. 71.
    Wu LL, Tang C, Dong LW, Liu MS. (2002) Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Shock 17:389–93.CrossRefPubMedGoogle Scholar
  72. 72.
    Takeda K, Kaisho T, Akira S. (2003) Toll-like receptors. Annu. Rev. Immunol. 21:335–76.CrossRefPubMedGoogle Scholar
  73. 73.
    Frantz S, et al. (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J. Clin. Invest. 104:271–80.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Frantz S, Ertl G, Bauersachs J. (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 4:444–54.CrossRefPubMedGoogle Scholar
  75. 75.
    Frantz S, Kelly RA, Bourcier T. (2001) Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J. Biol. Chem. 276:5197–203.CrossRefPubMedGoogle Scholar
  76. 76.
    Nemoto S, et al. (2002) Escherichia coli LPS-induced LV dysfunction: role of Toll-like receptor-4 in the adult heart. Am. J. Physiol. Heart Circ. Physiol. 282:H2316–23.CrossRefPubMedGoogle Scholar
  77. 77.
    Thomas JA, et al. (2003) IRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction. Am. J. Physiol. Heart Circ. Physiol. 285:H597–606.CrossRefPubMedGoogle Scholar
  78. 78.
    Baumgarten G, et al. (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of Tolllike receptor-4. J. Infect. Dis. 183:1617–24.CrossRefPubMedGoogle Scholar
  79. 79.
    Ferrero E, et al. (1993) Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc. Natl. Acad. Sci. U. S. A. 90:2380–4.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Haziot A, et al. (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407–14.CrossRefPubMedGoogle Scholar
  81. 81.
    Knuefermann P, et al. (2002) CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction. Circulation 106:2608–15.CrossRefPubMedGoogle Scholar
  82. 82.
    Opie LH. Receptors and Signal Transduction. Lippincott Williams & Wilkins, London, 2004, p. 186–220.Google Scholar
  83. 83.
    Bocking JK, Sibbald WJ, Holliday RL, Scott S, Viidik T. (1979) Plasma catecholamine levels and pulmonary dysfunction in sepsis. Surg. Gynecol. Obstet. 148:715–9.PubMedGoogle Scholar
  84. 84.
    Bernardin G, Strosberg AD, Bernard A, Mattei M, Marullo S. (1998) Beta-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med. 24:1315–22.CrossRefPubMedGoogle Scholar
  85. 85.
    Hahn PY, et al. (1995) Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4:269–73.CrossRefPubMedGoogle Scholar
  86. 86.
    Iwase M, et al. (2001) Cardiac functional and structural alterations induced by endotoxin in rats: importance of platelet-activating factor. Crit. Care Med. 29:609–17.CrossRefPubMedGoogle Scholar
  87. 87.
    Tang C, Liu MS. (1996) Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am. J. Physiol. 270:R254–63.PubMedGoogle Scholar
  88. 88.
    Shepherd RE, Lang CH, McDonough KH. (1987) Myocardial adrenergic responsiveness after lethal and nonlethal doses of endotoxin. Am. J. Physiol. 252:H410–6.PubMedGoogle Scholar
  89. 89.
    Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte betaadrenergic responsiveness. Proc. Natl. Acad. Sci. U. S. A. 86:6753–7.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Matsuda N, et al. (2000) Impairment of cardiac beta-adrenoceptor cellular signaling by decreased expression of G(s alpha) in septic rabbits. Anesthesiology. 93:1465–73.CrossRefPubMedGoogle Scholar
  91. 91.
    Wu LL, et al. (2003) G protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis. Shock 19:533–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Bohm M, Kirchmayr R, Gierschik P, Erdmann E. (1995) Increase of myocardial inhibitory G-proteins in catecholamine-refractory septic shock or in septic multiorgan failure. Am. J. Med. 98:183–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Kyriakis JM, Avruch J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807–69.CrossRefPubMedGoogle Scholar
  94. 94.
    Baines CP, Molkentin JD. (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J. Mol. Cell. Cardiol. 38:47–62.CrossRefPubMedGoogle Scholar
  95. 95.
    Liu Q, Hofmann PA. (2004) Protein phosphatase 2A-mediated cross-talk between p38 MAPK and ERK in apoptosis of cardiac myocytes. Am. J. Physiol. Heart. Circ. Physiol. 286:H2204–12.CrossRefPubMedGoogle Scholar
  96. 96.
    Bogoyevitch MA, et al. (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart: p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ. Res. 79:162–73.CrossRefPubMedGoogle Scholar
  97. 97.
    Cook SA, Sugden PH, Clerk A. (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J. Mol. Cell Cardiol. 31:1429–34.CrossRefPubMedGoogle Scholar
  98. 98.
    Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. (2001) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ. Res. 89:201–10.CrossRefPubMedGoogle Scholar
  99. 99.
    Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB. (1988) Inadequate collagen tethers in dilated cardiopathy. Am. Heart. J. 116:1641–6.CrossRefPubMedGoogle Scholar
  100. 100.
    Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr. (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy: role of metalloproteinases and pyridinoline cross-links. Am. J. Pathol. 148: 1639–48.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Galis ZS, Khatri JJ. (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90:251–62.CrossRefPubMedGoogle Scholar
  102. 102.
    Cheung PY, et al. (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Wang W, et al. (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Lalu MM, Gao CQ, Schulz R. (2003) Matrix metalloproteinase inhibitors attenuate endotoxemia induced cardiac dysfunction: a potential role for MMP-9. Mol. Cell. Biochem. 251:61–6.CrossRefPubMedGoogle Scholar
  105. 105.
    Wohlschlaeger J, et al. (2005) Roles of MMP-2/-9 in cardiac dysfunction during early multiple organ failure in an ovine animal model. Pathol. Res. Pract. 201:809–17.CrossRefPubMedGoogle Scholar
  106. 106.
    Boyle WA 3rd, et al. (2000) iNOS gene expression modulates microvascular responsiveness in endotoxin-challenged mice. Circ. Res. 87:E18–24.CrossRefPubMedGoogle Scholar
  107. 107.
    Belcher E, Mitchell J, Evans T. (2002) Myocardial dysfunction in sepsis: no role for NO? Heart 87:507–9.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Cotton JM, Kearney MT, Shah AM. (2002) Nitric oxide and myocardial function in heart failure: friend or foe? Heart 88:564–6.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kumar A, et al. (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am. J. Physiol. 276:R265–76.PubMedGoogle Scholar
  110. 110.
    Paulus WJ, Vantrimpont PJ, Shah AM. (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans: assessment by bicoronary sodium nitroprusside infusion. Circulation 89:2070–8.CrossRefPubMedGoogle Scholar
  111. 111.
    Ullrich R, et al. (2000) Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102:1440–6.CrossRefPubMedGoogle Scholar
  112. 112.
    Ichinose F, et al. (2003) A selective inducible NOS dimerization inhibitor prevents systemic, cardiac, and pulmonary hemodynamic dysfunction in endotoxemic mice. Am. J. Physiol. Heart Circ. Physiol. 285:H2524–30.CrossRefPubMedGoogle Scholar
  113. 113.
    Barth E, et al. (2006) Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Crit. Care Med. 34:307–13.CrossRefPubMedGoogle Scholar
  114. 114.
    Grover R, et al. (1999) An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit. Care Med. 27:913–22.CrossRefPubMedGoogle Scholar
  115. 115.
    Ishida H, Ichimori K, Hirota Y, Fukahori M, Nakazawa H. (1996) Peroxynitrite-induced cardiac myocyte injury. Free Radic. Biol. Med. 20:343–50.CrossRefPubMedGoogle Scholar
  116. 116.
    Xie YW, Kaminski PM, Wolin MS. (1998) Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Circ. Res. 82:891–7.CrossRefPubMedGoogle Scholar
  117. 117.
    Lancel S, et al. (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J. Am. Coll. Cardiol. 43:2348–58.CrossRefPubMedGoogle Scholar
  118. 118.
    Crouser ED. (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–41.CrossRefPubMedGoogle Scholar
  119. 119.
    Gellerich FN, et al. (2002) Mitochondrial dysfunction in sepsis: evidence from bacteraemic baboons and endotoxaemic rabbits. Biosci. Rep. 22:99–113.CrossRefPubMedGoogle Scholar
  120. 120.
    Brealey D, et al. (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–23.CrossRefPubMedGoogle Scholar
  121. 121.
    Brealey D, et al. (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R491–7.CrossRefPubMedGoogle Scholar
  122. 122.
    Crouser ED, Julian MW, Blaho DV, Pfeiffer DR. (2002) Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit. Care Med. 30:276–84.CrossRefPubMedGoogle Scholar
  123. 123.
    Crouser ED, et al. (2004) Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia. Crit. Care Med. 32:478–88.CrossRefPubMedGoogle Scholar
  124. 124.
    Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA. (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc. Res. 64:279–88.CrossRefPubMedGoogle Scholar
  125. 125.
    Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS. (2004) Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J. Mol. Cell Cardiol. 36:141–50.CrossRefPubMedGoogle Scholar
  126. 126.
    Soriano FG, et al. (2006) Potential role of poly(adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Crit. Care Med. 34:1073–9.CrossRefPubMedGoogle Scholar
  127. 127.
    Levy RJ, Vijayasarathy C, Raj NR, Avadhani NG, Deutschman CS. (2004) Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis. Shock 21:110–4.CrossRefPubMedGoogle Scholar
  128. 128.
    Gellerich FN, et al. (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11:336–41.CrossRefPubMedGoogle Scholar
  129. 129.
    Trumbeckaite S, Opalka JR, Neuhof C, Zierz S, Gellerich FN. (2001) Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur. J. Biochem. 268:1422–9.CrossRefPubMedGoogle Scholar
  130. 130.
    Taylor DE, Ghio AJ, Piantadosi CA. (1995) Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch. Biochem. Biophys. 316:70–6.CrossRefPubMedGoogle Scholar
  131. 131.
    Levy RJ. (2007) Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28:24–8.CrossRefPubMedGoogle Scholar
  132. 132.
    Fink MP. (2002) Bench-to-bedside review: cytopathic hypoxia. Crit. Care 6:491–9.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Fink MP. (2002) Cytopathic hypoxia: is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit. Care Clin. 18:165–75.CrossRefPubMedGoogle Scholar
  134. 134.
    Suliman HB, Carraway, MS, Piantadosi CA. (2003) Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am. J. Respir. Crit. Care Med. 167:570–9.CrossRefPubMedGoogle Scholar
  135. 135.
    Larche J, et al. (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J. Am. Coll. Cardiol. 48:377–85.CrossRefPubMedGoogle Scholar
  136. 136.
    Bergmann MW, Loser P, Dietz R, von Harsdorf R. (2001) Effect of NF-kappa B inhibition on TNF-alpha-induced apoptosis and downstream pathways in cardiomyocytes. J. Mol. Cell Cardiol. 33:1223–32.CrossRefPubMedGoogle Scholar
  137. 137.
    Fauvel H, Marchetti P, Chopin C, Formstecher P, Neviere R. (2001) Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am. J. Physiol. Heart Circ. Physiol. 280:H1608–14.CrossRefPubMedGoogle Scholar
  138. 138.
    McDonald TE, Grinman MN, Carthy CM, Walley KR. (2000) Endotoxin infusion in rats induces apoptotic and survival pathways in hearts. Am. J. Physiol. Heart Circ. Physiol. 279: H2053–61.CrossRefPubMedGoogle Scholar
  139. 139.
    Carlson D, Maass DL, White DJ, Tan J, Horton JW. (2006) Antioxidant vitamin therapy alters sepsis-related apoptotic myocardial activity and inflammatory responses. Am. J. Physiol. Heart Circ. Physiol. 291:H2779–89.CrossRefPubMedGoogle Scholar
  140. 140.
    Buerke U, et al. (2007) Apoptosis contributes to septic cardiomyopathy and is improved by simvastatin therapy. Shock. Aug 2;Publish Ahead of Print.Google Scholar
  141. 141.
    Kumar A, et al. (2005) Human serum from patients with septic shock activates transcription factors STAT1, IRF1, and NF-kappaB and induces apoptosis in human cardiac myocytes. J. Biol. Chem. 280:42619–26.CrossRefPubMedGoogle Scholar
  142. 142.
    Lancel S, et al. (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111: 2596–604.CrossRefGoogle Scholar
  143. 143.
    Neviere R, Fauvel H, Chopin C, Formstecher P, Marchetti P. (2001) Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am. J. Respir. Crit. Care Med. 163:218–25.CrossRefPubMedGoogle Scholar
  144. 144.
    Fauvel H, et al. (2002) Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. Am. J. Respir. Crit. Care Med. 165:449–55.CrossRefPubMedGoogle Scholar
  145. 145.
    Lancel S, et al. (2005) Expression of apoptosis regulatory factors during myocardial dysfunction in endotoxemic rats. Crit. Care Med. 33:492–6.CrossRefPubMedGoogle Scholar
  146. 146.
    Heusch G, Schulz R. (2000) The biology of myocardial hibernation. Trends Cardiovasc. Med. 10: 108–14.CrossRefPubMedGoogle Scholar
  147. 147.
    Heusch G, Rose J, Skyschally A, Post H, Schulz R. (1996) Calcium responsiveness in regional myocardial short-term hibernation and stunning in the in situ porcine heart: inotropic responses to postextrasystolic potentiation and intracoronary calcium. Circulation 93:1556–66.CrossRefPubMedGoogle Scholar
  148. 148.
    Sawyer DB, Loscalzo J. (2002) Myocardial hibernation: restorative or preterminal sleep? Circulation 105:1517–9.CrossRefPubMedGoogle Scholar
  149. 149.
    Vanoverschelde JL, et al. (1997) Chronic myocardial hibernation in humans: from bedside to bench. Circulation 95:1961–71.CrossRefPubMedGoogle Scholar
  150. 150.
    Elsasser A, et al. (1997) Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 96:2920–31.CrossRefPubMedGoogle Scholar
  151. 151.
    Elsasser A, et al. (2004) Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J. Am. Coll. Cardiol. 43:2191–9.CrossRefPubMedGoogle Scholar
  152. 152.
    Kalra DK, et al. (2002) Increased myocardial gene expression of tumor necrosis factor-alpha and nitric oxide synthase-2: a potential mechanism for depressed myocardial function in hibernating myocardium in humans. Circulation 105:1537–40.CrossRefPubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Michael A. Flierl
    • 1
  • Daniel Rittirsch
    • 1
  • Markus S. Huber-Lang
    • 2
  • J. Vidya Sarma
    • 1
  • Peter A. Ward
    • 1
  1. 1.Department of PathologyThe University of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Trauma, Hand and Reconstructive SurgeryUniversity of Ulm Medical SchoolUlmGermany

Personalised recommendations