Molecular Medicine

, Volume 14, Issue 7–8, pp 429–435 | Cite as

Association of Urinary N-Domain Angiotensin I-Converting Enzyme with Plasma Inflammatory Markers and Endothelial Function

  • Fernanda B. Fernandes
  • Frida L. Plavnik
  • Andressa M. S. Teixeira
  • Dejaldo M. J. Christofalo
  • Sergio A. Ajzen
  • Elisa M. S. Higa
  • Fernanda A. Ronchi
  • Ricardo C. C. Sesso
  • Dulce E. Casarini
Research Article


The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90−) of the 90 kDa ACE, the presence (FH+) or absence (FH−) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH−/ACE90−. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% ± 5.3% in ACE90+ compared with 17.6% ± 7.1% in ACE90− group and 12.4% ± 5.6% in FH+/ACE90+ compared with 17.7% ± 6.2% in FH−/ACE90− group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH−/ACE90− group, as follows: 10.0 ± 2.3 µM compared with 12.7 ± 1.5 µM, and 1.3 ± 1.8 mg/L compared with 3.6 ± 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia.



This study was supported by FAPESP (2002/13290-2 and 2004/11149-6), We thank Vania D’Almeida, Margaret Gori Mouro, and Luciana Cristina Teixeira for their technical assistance. Thank you also to François Alhenc-Gelas, Unité 367, INSERM, Paris, France, for the kind gift of antibody Y4.


  1. 1.
    Lloyd-Jones DM, Bloch KD. (1996) The vascular biology of nitric oxide and its role in atherogenesis. Annu. Rev. Med. 47:365–75.CrossRefGoogle Scholar
  2. 2.
    Yan CKD, Aizawa T, Berk BC. (2003) Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler. Thromb. Vasc. Biol. 23:26–36.CrossRefGoogle Scholar
  3. 3.
    Mancini GB et al. (1996) Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study. Circulation. 94:258–65.CrossRefGoogle Scholar
  4. 4.
    Yusuf S et al. (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med. 342:145–53.CrossRefGoogle Scholar
  5. 5.
    Skeggs LT Jr, Kahn JR, Shumway NP. (1956) The preparation and function of the hypertensin-converting enzyme. J. Exp. Med. 103:295–9.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yang HY, Erdos EG, Levin Y. (1970) A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim. Biophys. Acta. 214:374–6.CrossRefGoogle Scholar
  7. 7.
    Fleming, I. (2006) Signaling by the angiotensin-converting enzyme. Circ. Res. 98:887–96.CrossRefGoogle Scholar
  8. 8.
    Soubrier F et al. (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. U. S. A. 85:9386–90.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Erdös EG, Skidgel RA. (1987) The angiotensin I-converting enzyme. Lab. Invest. 56:345–8.PubMedGoogle Scholar
  10. 10.
    Lanzillo JJ, Stevens J, Dasarathy Y, Yotsumoto H, Fanburg BL. (1985) Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. J. Biol. Chem. 260:14938–44.PubMedGoogle Scholar
  11. 11.
    Lantz I, Thörnwall M, Kihlström JE, Nyberg F. (1992) A comparison of human lung, brain, CSF and plasma angiotensin-converting enzyme with regard to neuropeptide metabolism. Biochem. Int. 26:415–26.PubMedGoogle Scholar
  12. 12.
    Johnston CI. (1992) Franz Volhard Lecture. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J. Hypertens. Suppl. 10:S13–26.PubMedGoogle Scholar
  13. 13.
    Casarini DE et al. (1995) Calcium channel blockers as inhibitors of angiotensin I-converting enzyme. Hypertension. 26:1145–8.CrossRefGoogle Scholar
  14. 14.
    Casarini DE et al. (1991) Effect of diuretics upon urinary levels of angiotensin converting enzyme (ACE) of essential mild hypertensive patients (EHP). Hypertension. 16:463. Abstract.Google Scholar
  15. 15.
    Casarini DE et al. (2001) Angiotensin converting enzymes from human urine of mild hypertensive untreated patients resemble the N-terminal fragment of human angiotensin I-converting enzyme. Int. J. Biochem. Cell. Biol. 33:75–85.CrossRefGoogle Scholar
  16. 16.
    Marques GD et al. (2003) N-domain angiotensin I-converting enzyme with 80 kDa as a possible genetic marker of hypertension. Hypertension. 42:693–701.CrossRefGoogle Scholar
  17. 17.
    Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 323:22–7.CrossRefGoogle Scholar
  18. 18.
    McAllister AS et al. (1999) Basal nitric oxide production is impaired in offspring of patients with essential hypertension. Clin. Sci. (Lond). 97:141–7.CrossRefGoogle Scholar
  19. 19.
    Libby P, Ridker PM, Maseri A. (2002) Inflammation and atherosclerosis. Circulation. 105:1135–43.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jialal I, Devaraj S. (2003) Role of C-reactive protein in the assessment of cardiovascular risk. Am. J. Cardiol. 91:200–2.CrossRefGoogle Scholar
  21. 21.
    Cleland SJ et al. (2000) Endothelial dysfunction as a possible link between C-reactive protein levels and cardiovascular disease. Clin. Sci. (Lond). 98:531–5.CrossRefGoogle Scholar
  22. 22.
    Chrysohoou C, Pitsavos C, Panagiotakos DB, Skoumas J, Stefanadis C. (2004) Association between prehypertension status and inflammatory markers related to atherosclerotic disease: The ATTICA Study. Am. J. Hypertens. 17:568–73.CrossRefGoogle Scholar
  23. 23.
    Ridker PM. (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 107:363–9.CrossRefGoogle Scholar
  24. 24.
    Ueland PM, Refsum H, Beresford SA, Vollset SE. (2000) The controversy over homocysteine and cardiovascular risk. Am. J. Clin. Nutr. 72:324–32.CrossRefGoogle Scholar
  25. 25.
    Piquilloud Y, Reinharz A, Roth M. (1970) Studies on the angiotensin converting enzyme with different substrates. Biochim. Biophys. Acta. 206:136–42.CrossRefGoogle Scholar
  26. 26.
    Friedland J, Silverstein E. (1976) Asensitive fluorimetric assay for serum angiotensin-converting enzyme. Am. J. Clin. Pathol. 66:416–24.CrossRefGoogle Scholar
  27. 27.
    Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–54.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–5.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bruneval P et al. (1986) Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry. 85:73–80.CrossRefGoogle Scholar
  30. 30.
    Celenmajer DS et al. (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 340:1111–5.CrossRefGoogle Scholar
  31. 31.
    Pfeiffer CM, Huff DL, Gunter EW. (1999) Rapid and accurate HPLC assay for plasma total homocysteine and cysteine in a clinical laboratory setting. Clin. Chem. 45:290–2.PubMedGoogle Scholar
  32. 32.
    Nunes EC et al. (2000) Standardization of homocysteine determination by high pressure liquid chromatography and application on coronary artery disease patients. J. Bras. Patol. 36:166–73.Google Scholar
  33. 33.
    Ribeiro L et al. (2004) Evaluation of the nitric oxide production in rat renal artery smooth muscle cells culture exposed to radiocontrast agents. Kidney Int. 65:589–96.CrossRefGoogle Scholar
  34. 34.
    Luft FC. (1998) Molecular genetics of human hypertension. J. Hypertens. 16:1871–8.CrossRefGoogle Scholar
  35. 35.
    Hooper NM. (1991) Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int. J. Biochem. 23: 641–7.CrossRefGoogle Scholar
  36. 36.
    Beldent V, Michaud A, Bonnefoy C, Chauvet MT, Corvol P. (1995) Cell surface localization of proteolysis of human endothelial angiotensin I-converting enzyme. Effect of the amino-terminal domain in the solubilization process. J. Biol. Chem. 270:28962–9.CrossRefGoogle Scholar
  37. 37.
    Williams TA, Danilov S, Alhenc-Gelas F, Soubrier F. (1996) A study of chimeras constructed with the two domains of angiotensin I-converting enzyme. Biochem. Pharmacol. 51:11–4.CrossRefGoogle Scholar
  38. 38.
    Rogers J et al. (1980) Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell. 20:303–12.CrossRefGoogle Scholar
  39. 39.
    Sugimura K, Tian XL, Hoffmann S, Ganten D, Bader M. (1998) Alternative splicing of the mRNA coding for the human endothelial angiotensin-converting enzyme: a new mechanism for solubilization. Biochem. Biophys. Res. Commun. 247: 466–72.CrossRefGoogle Scholar
  40. 40.
    Taddei S, Virdis A, Mattei P, Arzilli F, Salvetti A. (1992) Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J. Cardiovasc. Pharmacol. 20 Suppl 12:S193–5.CrossRefGoogle Scholar
  41. 41.
    Treasure CB et al. (1992) Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ. Res. 71:776–81.CrossRefGoogle Scholar
  42. 42.
    Lyamina NP, Dolotovskaya PV, Lyamina SV, Malyshev IY, Manukhina EB. (2003) Nitric oxide production and intensity of free radical processes in young men with high normal and hypertensive blood pressure. Med. Sci. Monit. 9:CR304–10.PubMedGoogle Scholar
  43. 43.
    Refsum H, Guttormsen AB, Fiskerstrand T, Ueland PM. (1998) Hyperhomocysteinemia in terms of steady-state kinetics. Eur. J. Pediatr. 157 Suppl 2:S45–9.CrossRefGoogle Scholar
  44. 44.
    Clapp BR et al. (2005) Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability. Circulation. 111:1530–6.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Fernanda B. Fernandes
    • 1
  • Frida L. Plavnik
    • 1
    • 3
  • Andressa M. S. Teixeira
    • 1
  • Dejaldo M. J. Christofalo
    • 2
  • Sergio A. Ajzen
    • 2
  • Elisa M. S. Higa
    • 1
    • 4
  • Fernanda A. Ronchi
    • 1
  • Ricardo C. C. Sesso
    • 1
  • Dulce E. Casarini
    • 1
    • 3
  1. 1.Escola Paulista de Medicina, Departamento de Medicina, Disciplina de NefrologiaUniversidade Federal de São PauloSão Paulo, SPBrasil
  2. 2.Department of Image DiagnosticFederal University of São PauloSão PauloBrazil
  3. 3.Oswaldo Ramos FoundationFederal University of São PauloSão PauloBrazil
  4. 4.Emergency DivisionFederal University of São PauloSão PauloBrazil

Personalised recommendations