Advertisement

Molecular Medicine

, Volume 14, Issue 1–2, pp 64–78 | Cite as

Monitoring Immune Dysfunctions in the Septic Patient: A New Skin for the Old Ceremony

  • Guillaume Monneret
  • Fabienne Venet
  • Alexandre Pachot
  • Alain Lepape
Review Article

Abstract

Septic syndromes represent a major although largely underrecognized healthcare problem worldwide, accounting for thousands of deaths every year. It is now agreed that sepsis deeply perturbs immune homeostasis by inducing an initial tremendous systemic inflammatory response which is accompanied by an anti-inflammatory process, acting as negative feedback. This compensatory inhibitory response secondly becomes deleterious as nearly all immune functions are compromised. These alterations might be directly responsible for worsening outcome, as they may play a major role in the decreased resistance to nosocomial infections in patients who survived initial resuscitation. Consequently, immunostimulatory therapies may now be assessed for the treatment of sepsis. This review focuses on immune dysfunctions described in septic patients and on their potential use as markers on a routine standardized basis for prediction of adverse outcome or of occurrence of secondary nosocomial infections. This constitutes a prerequisite to a staging system for individualized treatment for these hitherto deadly syndromes.

Notes

Acknowledgments

This review does not represent an exhaustive listing of studies aimed at monitoring immunological functions in the critically ill patient. We sincerely apologize for works not cited in this manuscript. G.M. thanks all the Immunology Laboratory staff at Hôpital E. Herriot for constant support over the years. None of the authors has any potential financial conflict of interest related to this manuscript.

References

  1. 1.
    Angus DC, Wax RS (2001) Epidemiology of sepsis: an update. Crit. Care. Med. 29:S109–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Brun-Buisson C, Meshaka P, Pinton P, Vallet B (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive. Care. Med. 30:580–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Brun-Buisson C, Roudot-Thoraval F, Girou E, Grenier-Sennelier C, Durand-Zaleski I (2003) The costs of septic syndromes in the intensive care unit and influence of hospital-acquired sepsis. Intensive. Care. Med. 29:1464–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit. Care. Med. 35:1244–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Zeni F, Freeman B, Natanson C (1997) Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit. Care. Med. 25:1095–100.CrossRefPubMedGoogle Scholar
  6. 6.
    Remick DG (2007) Pathophysiology of sepsis. Am. J. Pathol. 170:1435–44.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348:138–150.CrossRefPubMedGoogle Scholar
  8. 8.
    Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78.CrossRefGoogle Scholar
  9. 9.
    Munford RS, Pugin J (2001) Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am. J. Respir. Crit. Care. Med. 163:316–321.CrossRefPubMedGoogle Scholar
  10. 10.
    Monneret G, Lepape A, Voirin N, Bohe J, Venet F, Debard AL, Thizy H, Bienvenu J, Gueyffier F, Vanhems P (2006) Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive. Care. Med. 32:1175–83.CrossRefPubMedGoogle Scholar
  11. 11.
    Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G (2006) Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol. Lett. 106:63–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Pugin J (2007) Immunostimulation is a rational therapeutic strategy in sepsis. Novartis. Found. Symp. 280:21–7.PubMedGoogle Scholar
  13. 13.
    Wesche DE, Lomas-Neira JL, Perl M, Chung CS, Ayala A (2005) Leukocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol. 78:325–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, Lepape A (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit. Care. Med. 31:2068–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Lederer JA, Rodrick ML, Mannick JA (1999) The effects of injury on the adaptive immune response. Shock 11:153–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Manjuck J, et al. (2000) Decreased response to recall antigens is associated with depressed costimulatory receptor expression in septic critically ill patients. J. Lab. Clin. Med. 135:153–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Roth G, Moser B, Krenn C, Brunner M, Haisjackl M, Almer G, Gerlitz S, Wolner E, Boltz-Nitulescu G, Ankersmit HJ (2003) Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance. Biochem. Biophys. Res. Commun. 308:840–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Meakins JL, Pietsch JB, Bubenick O, Kelly R, Rode H, Gordon J, MacLean LD (1977) Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and trauma. Ann. Surg. 186:241–50.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rode HN, Christou NV, Bubenik O, Superina R, Gordon J, Meakins JL, MacLean LD (1982) Lymphocyte function in anergic patients. Clin. Exp. Immunol. 47:155–61.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Christou NV, Meakins JL, Gordon J, Yee J, Hassan-Zahraee M, Nohr CW, Shizgal HM, MacLean LD (1995) The delayed hypersensitivity response and host resistance in surgical patients: 20 years later. Ann. Surg. 222:534–46.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    O’Mahony JB, Palder SB, Wood JJ, McIrvine A, Rodrick ML, Demling RH, Mannick JA (1984) Depression of cellular immunity after multiple trauma in the absence of sepsis. J. Trauma 24:869–75.CrossRefPubMedGoogle Scholar
  22. 22.
    Faist E, Kupper TS, Baker CC, Chaudry IH, Dwyer J, Baue AE (1986) Depression of cellular immunity after major injury: its association with posttraumatic complications and its reversal with immunomodulation. Arch. Surg. 121:1000–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Hensler T, Hecker H, Heeg K, Heidecke CD, Bartels H, Barthlen W, Wagner H, Siewert JR, Holzmann B (1997) Distinct mechanisms of immunosuppression as a consequence of major surgery. Infect. Immun. 65:2283–91.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Puyana JC, Pellegrini JD, De AK, Kodys K, Silva WE, Miller CL (1998) Both T-helper-1- and T-helper-2-type lymphokines are depressed in posttrauma anergy. J. Trauma 44:1037–45.CrossRefPubMedGoogle Scholar
  25. 25.
    De AK, Kodys KM, Pellegrini J, Yeh B, Furse RK, Bankey P, Miller-Graziano CL (2000) Induction of global anergy rather than inhibitory Th2 lymphokines mediates posttrauma T cell immunodepression. Clin. Immunol. 96:52–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Pellegrini JD, De AK, Kodys K, Puyana JC, Furse RK, Miller-Graziano C (2000) Relationships between T lymphocyte apoptosis and anergy following trauma. J. Surg. Res. 88:200–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Laudanski K, et al. (2006) Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways. Proc. Natl. Acad. Sci. U. S. A. 103:15564–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bandyopadhyay G, De A, Laudanski K, Li F, Lentz C, Bankey P, Miller-Graziano C (2007) Negative signaling contributes to T-cell anergy in trauma patients. Crit. Care. Med. 35:794–801.CrossRefPubMedGoogle Scholar
  29. 29.
    Murphy T, Paterson H, Rogers S, Mannick JA, Lederer JA (2003) Use of intracellular cytokine staining and bacterial superantigen to document suppression of the adaptive immune system in injured patients. Ann. Surg. 238:401–10.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Heidecke CD, Hensler T, Weighardt H, Zantl N, Wagner H, Siewert JR, Holzmann B (1999) Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am. J. Surg. 178:288–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Ochoa JB, Makarenkova V (2005) T lymphocytes. Crit. Care. Med. 33:S510–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Cavaillon JM, Adib-Conquy M (2007) Determining the degree of immunodysregulation in sepsis. Contrib. Nephrol. 156:101–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J. Clin. Invest. 88:1747–54.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    van Deuren M, van der Ven-Jongekrijg J, Demacker PN, Bartelink AK, van Dalen R, Sauerwein RW, Gallati H, Vannice JL, van der Meer JW (1994) Differential expression of proinflammatory cytokines and their inhibitors during the course of meningococcal infections. J. Infect. Dis. 169:157–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Munoz C, Misset B, Fitting C, Bleriot JP, Carlet J, Cavaillon JM (1991) Dissociation between plasma and monocyte-associated cytokines during sepsis. Eur. J. Immunol. 21:2177–84.CrossRefPubMedGoogle Scholar
  36. 36.
    Rigato O, Salomao R (2003) Impaired production of interferon-gamma and tumor necrosis factor-alpha but not of interleukin 10 in whole blood of patients with sepsis. Shock 19:113–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Stanilova SA, Karakolev ZT, Dimov GS, Dobreva ZG, Miteva LD, Slavov ES, Stefanov CS, Stanilov NS (2005) High interleukin 12 and low interleukin 10 production after in vitro stimulation detected in sepsis survivors. Intensive Care Med. 31:401–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Cavaillon JM, Adrie C, Fitting C, Adib-Conquy M (2003) Endotoxin tolerance: is there a clinical relevance? J. Endotoxin. Res. 9:101–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang X, Morrison DC (1993) Lipopolysaccharide structure-function relationship in activation versus reprogramming of mouse peritoneal macrophages. J. Leukoc. Biol. 54:444–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care 10:233.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nierhaus A, Montag B, Timmler N, Frings DP, Gutensohn K, Jung R, Schneider CG, Pothmann W, Brassel AK, Schulte Am Esch J (2003) Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis. Intensive Care Med. 29:646–51.CrossRefPubMedGoogle Scholar
  42. 42.
    Ploder M, Pelinka L, Schmuckenschlager C, Wessner B, Ankersmit HJ, Fuerst W, Redl H, Roth E, Spittler A (2006) Lipopolysaccharide-induced tumor necrosis factor alpha production and not monocyte human leukocyte antigen-DR expression is correlated with survival in septic trauma patients. Shock 25:129–34.PubMedGoogle Scholar
  43. 43.
    Marshall JC (2003) Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat. Rev. Drug Discov 2:391–405.CrossRefPubMedGoogle Scholar
  44. 44.
    Perry SE, Mostafa SM, Wenstone R, McLaughlin PJ (2002) Low plasma granulocyte-macrophage colony stimulating factor is an indicator of poor prognosis in sepsis. Intensive Care Med. 28:981–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang H, et al. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–51.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sunden-Cullberg J, et al. (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit. Care Med. 33:564–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Angus DC, Yang L, Kong L, Kellum JA, Delude RL, Tracey KJ, Weissfeld L (2007) Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit. Care Med. 35:1061–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81:1–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Pachot A, et al. (2005) Longitudinal study of cytokine and immune transcription factor mRNA expression in septic shock. Clin. Immunol. 114:61–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Gogos CA, et al. (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 181:176–80.CrossRefPubMedGoogle Scholar
  51. 51.
    van Dissel JT, et al. (1998) Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet 351:950–3.CrossRefPubMedGoogle Scholar
  52. 52.
    Hynninen M, et al. (2003) Predictive value of monocyte histocompatibility leukocyte antigen-DR expression and plasma interleukin-4 and -10 levels in critically ill patients with sepsis. Shock 20:1–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Carrol ED, Thomson AP, Jones AP, Jeffers G, Hart CA (2005) A predominantly anti-inflammatory cytokine profile is associated with disease severity in meningococcal sepsis. Intensive Care Med. 31:1415–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Monneret G, et al. (2004) The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol. Lett. 95:193–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Abe R, et al. (2007) Up-regulation of interleukin-10 mRNA expression in peripheral leukocytes predicts poor outcome and diminished human leukocyte antigen-DR expression on monocytes in septic patients. J. Surg. Res. Aug 20 [Epub ahead of print].Google Scholar
  56. 56.
    Lekkou A, et al. (2004) Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. Clin. Diagn. Lab. Immunol. 11: 161–7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Leonidou L, Mouzaki A, Michalaki M, Delastic AL, Kyriazopoulou V, Bassaris HP, Gogos CA (2007) Cytokine production and hospital mortality in patients with sepsis-induced stress hyperglycemia. J. Infect. 55:340–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Oberholzer A, Oberholzer C, Moldawer LL (2002) Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit. Care. Med. 30:S58–63.CrossRefPubMedGoogle Scholar
  59. 59.
    Sfeir T, et al. (2001) Role of interleukin-10 in monocyte hyporesponsiveness associated with septic shock. Crit. Care. Med. 29:129–33.CrossRefPubMedGoogle Scholar
  60. 60.
    Muehlstedt SG, Lyte M, Rodriguez JL (2002) Increased IL-10 production and HLA-DR suppression in the lungs of injured patients precede the development of nosocomial pneumonia. Shock 17:443–50.CrossRefPubMedGoogle Scholar
  61. 61.
    Randow F, et al. (1995) Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J. Exp. Med. 181:1887–92.CrossRefPubMedGoogle Scholar
  62. 62.
    Astiz M, et al. (1996) Monocyte response to bacterial toxins, expression of cell surface receptors, and release of anti-inflammatory cytokines during sepsis. J. Lab. Clin. Med. 128:594–600.CrossRefPubMedGoogle Scholar
  63. 63.
    Monneret G, Voirin N, Krawice-Radanne I, Bohe J, Lepape A, Rouas-Freiss N, Carosella ED (2007) Soluble human leukocyte antigen-G5 in septic shock: marked and persisting elevation as a predictor of survival. Crit. Care. Med. 35:1942–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Martinez C, et al. (2002) Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proc. Natl. Acad. Sci. U. S. A. 99:1053–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yaqub S, Solhaug V, Vang T, Solberg R, Aasen A, Tasken K, Wang JE (2003) Ahuman whole blood model of LPS-mediated suppression of T cell activation. Med. Sci. Monit. 9:BR120–6.PubMedGoogle Scholar
  66. 66.
    Catania A, Cutuli M, Garofalo L, Airaghi L, Valenza F, Lipton JM, Gattinoni L (2000) Plasma concentrations and anti-L-cytokine effects of alpha-melanocyte stimulating hormone in septic patients. Crit. Care. Med. 28:1403–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Christ-Crain M, Morgenthaler NG, Struck J, Harbarth S, Bergmann A, Muller B (2005) Midregional pro-adrenomedullin as a prognostic marker in sepsis: an observational study. Crit. Care 9:R816–24.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Le Tulzo Y, et al. (2004) Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. Am. J. Respir. Crit. Care. Med. 169:1144–51.CrossRefPubMedGoogle Scholar
  69. 69.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve: an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52:595–638.PubMedGoogle Scholar
  70. 70.
    Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117:289–96.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Osuchowski MF, Welch K, Yang H, Siddiqui J, Remick DG (2007) Chronic sepsis mortality characterized by an individualized inflammatory response. J. Immunol. 179:623–30.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Osuchowski MF, Welch K, Siddiqui J, Remick DG (2006) Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J. Immunol. 177:1967–74.CrossRefPubMedGoogle Scholar
  73. 73.
    Oberholzer A, Souza SM, Tschoeke SK, Oberholzer C, Abouhamze A, Pribble JP, Moldawer LL (2005) Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis. Shock 23:488–93.PubMedGoogle Scholar
  74. 74.
    Huang X, Venet F, Chung CS, Lomas-Neira J, Ayala A (2007) Changes in dendritic cell function in the immune response to sepsis: cell- and tissue-based therapy. Expert. Opin. Biol. Ther. 7:929–38.CrossRefPubMedGoogle Scholar
  75. 75.
    Benjamim CF, Lundy SK, Lukacs NW, Hogaboam CM, Kunkel SL (2005) Reversal of long-term sepsis-induced immunosuppression by dendritic cells. Blood 105:3588–95.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER (2005) Enhancement of dendritic cell production by fms-like tyrosine kinase-3 lig-and increases the resistance of mice to a burn wound infection. J. Immunol. 174:404–10.CrossRefPubMedGoogle Scholar
  77. 77.
    Wysocka M, Montaner LJ, Karp CL (2005) Flt3 ligand treatment reverses endotoxin tolerance-related immunoparalysis. J. Immunol. 174:7398–402.CrossRefPubMedGoogle Scholar
  78. 78.
    Guisset O, Dilhuydy MS, Thiebaut R, Lefevre J, Camou F, Sarrat A, Gabinski C, Moreau JF, Blanco P (2007) Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med. 33:148–52.CrossRefPubMedGoogle Scholar
  79. 79.
    Ho CS, Lopez JA, Vuckovic S, Pyke CM, Hockey RL, Hart DN (2001) Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts. Blood 98:140–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH, Cobb JP, Coopersmith C, Karl IE (2002) Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 168:2493–500.CrossRefPubMedGoogle Scholar
  81. 81.
    Faivre V, Lukaszewicz AC, Alves A, Charron D, Payen D, Haziot A (2007) Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis. Clin. Exp. Immunol. 147:426–39.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    De AK, Laudanski K, Miller-Graziano CL (2003) Failure of monocytes of trauma patients to convert to immature dendritic cells is related to preferential macrophage-colony-stimulating factor-driven macrophage differentiation. J. Immunol. 170:6355–62.CrossRefPubMedGoogle Scholar
  83. 83.
    Koppelman B, Neefjes JJ, de Vries JE, de Waal Malefyt R (1997) Interleukin-10 down-regulates MHC class II alphabeta peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity 7:861–71.CrossRefPubMedGoogle Scholar
  84. 84.
    Krakauer T, Oppenheim JJ (1993) IL-1 and tumor necrosis factor-alpha each up-regulate both the expression of IFN-gamma receptors and enhance IFN-gamma-induced HLA-DR expression on human monocytes and a human monocytic cell line (THP-1). J. Immunol. 150:1205–11.PubMedGoogle Scholar
  85. 85.
    Schwiebert LM, Schleimer RP, Radka SF, Ono SJ (1995) Modulation of MHC class II expression in human cells by dexamethasone. Cell. Immunol. 165:12–93.CrossRefPubMedGoogle Scholar
  86. 86.
    Basta PV, Moore TL, Yokota S, Ting JP (1989) A beta-adrenergic agonist modulates DR alpha gene transcription via enhanced cAMP levels in a glioblastoma multiforme line. J. Immunol. 142: 2895–901.PubMedGoogle Scholar
  87. 87.
    Fumeaux T, Pugin J (2006) Is the measurement of monocytes HLA-DR expression useful in patients with sepsis? Intensive Care Med. 32:1106–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Tschoeke SK, Moldawer LL (2005) Human leukocyte antigen expression in sepsis: what have we learned? Crit. Care Med. 33:236–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Wolk K, et al. (2000) Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood 96:218–23.PubMedGoogle Scholar
  90. 90.
    Schneider C, et al. (2004) Perioperative recombinant human granulocyte colony-stimulating factor (filgrastim) treatment prevents immunoinflammatory dysfunction associated with major surgery. Ann. Surg. 239:75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Piani A, et al. (2000) Expression of MHC class II molecules contributes to lipopolysaccharide responsiveness. Eur. J. Immunol. 30:3140–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Hershman MJ, et al. (1990) Monocyte HLA-DR antigen expression characterizes clinical outcome in the trauma patient. Br. J. Surg. 77:204–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Wakefield CH, Carey PD, Foulds S, Monson JR, Guillou PJ (1993) Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery. Br. J. Surg. 80:205–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Giannoudis PV, et al. (2000) Immediate IL-10 expression following major orthopaedic trauma: relationship to anti-inflammatory response and subsequent development of sepsis. Intensive Care Med. 26:1076–81.CrossRefPubMedGoogle Scholar
  95. 95.
    Ditschkowski M, et al. (1999) HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann. Surg. 229:246–54.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Satoh A, et al. (2002) Human leukocyte antigen-DR expression on peripheral monocytes as a predictive marker of sepsis during acute pancreatitis. Pancreas 25:245–50.CrossRefPubMedGoogle Scholar
  97. 97.
    Tschaikowsky K, et al. (2002) Coincidence of pro-and anti-inflammatory responses in the early phase of severe sepsis: longitudinal study of mononuclear histocompatibility leukocyte anti-gen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients. Crit. Care. Med. 30:1015–23.CrossRefPubMedGoogle Scholar
  98. 98.
    Walsh DS, et al. (2005) Characterization of circulating monocytes expressing HLA-DR or CD71 and related soluble factors for 2 weeks after severe, non-thermal injury. J. Surg. Res. 129:221–30.CrossRefPubMedGoogle Scholar
  99. 99.
    Allen ML, et al. (2002) Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care. Crit. Care. Med. 30:1140–5.CrossRefPubMedGoogle Scholar
  100. 100.
    Sachse C, Prigge M, Cramer G, Pallua N, Henkel E (1999) Association between reduced human leukocyte antigen (HLA)-DR expression on blood monocytes and increased plasma level of interleukin-10 in patients with severe burns. Clin. Chem. Lab. Med. 37:193–8.CrossRefPubMedGoogle Scholar
  101. 101.
    Venet F, Tissot S, Debard AL, Faudot C, Crampe C, Pachot A, Ayala A, Monneret G (2007) Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: correlation with severity and secondary septic shock. Crit. Care. Med. 35:1910–1917.CrossRefPubMedGoogle Scholar
  102. 102.
    Haveman JW, van den Berg AP, van den Berk JM, Mesander G, Slooff MJ, de Leij LH, The TH (1999) Low HLA-DR expression on peripheral blood monocytes predicts bacterial sepsis after liver transplantation: relation with prednisolone intake. Transpl. Infect. Dis. 1:146–52.CrossRefPubMedGoogle Scholar
  103. 103.
    Haveman JW, van den Berg AP, Verhoeven EL, Nijsten MW, van den Dungen JJ, The HT, Zwaveling JH (2006) HLA-DR expression on monocytes and systemic inflammation in patients with ruptured abdominal aortic aneurysms. Crit. Care. 10:R119.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Perry SE, et al. (2003) Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis? Intensive Care Med. 29:1245–52.CrossRefPubMedGoogle Scholar
  105. 105.
    Muller Kobold AC, et al. (2000) Leukocyte activation in sepsis; correlations with disease state and mortality. Intensive Care Med. 26:883–92.CrossRefPubMedGoogle Scholar
  106. 106.
    Fumeaux T, Pugin J (2002) Role of interleukin-10 in the intracellular sequestration of human leukocyte antigen-DR in monocytes during septic shock. Am. J. Respir. Crit. Care Med. 166:1475–82.CrossRefPubMedGoogle Scholar
  107. 107.
    Docke WD, et al. (1997) Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat. Med. 3:678–81.CrossRefPubMedGoogle Scholar
  108. 108.
    Saenz JJ, et al. (2002) Early prognosis in severe sepsis via analyzing the monocyte immunophenotype. Intensive Care Med. 27:970–7.CrossRefGoogle Scholar
  109. 109.
    Monneret G, et al. (2002) Analytical requirements for measuring monocytic HLA-DR by flow cytometry: application to the monitoring of patients with septic shock. Clin. Chem. 48:1589–92.PubMedGoogle Scholar
  110. 110.
    Monneret G, et al. (2006) Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 32:1175–83.CrossRefPubMedGoogle Scholar
  111. 111.
    Pachot A, Monneret G, Brion A, Venet F, Bohe J, Bienvenu J, Mougin B, Lepape A (2005) Messenger RNA expression of major histocompatibility complex class II genes in whole blood from septic shock patients. Crit. Care Med. 33:31–8.CrossRefPubMedGoogle Scholar
  112. 112.
    Docke WD, et al. (2005) Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter study. Clin. Chem. 51:2341–7.CrossRefPubMedGoogle Scholar
  113. 113.
    Heinzelmann M, Mercer-Jones M, Cheadle WG, Polk HC Jr (1996) CD14 expression in injured patients correlates with outcome. Ann. Surg. 224:91–6.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Venet F, Pachot A, Debard AL, Bohe J, Bienvenu J, Lepape A, Powell WS, Monneret G (2006) Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J. Immunol. 177:6540–7.CrossRefPubMedGoogle Scholar
  115. 115.
    Aalto H, Takala A, Kautiainen H, Siitonen S, Repo H (2007) Monocyte CD14 and soluble CD14 in predicting mortality of patients with severe community acquired infection. Scand. J. Infect. Dis. 39:596–603.CrossRefPubMedGoogle Scholar
  116. 116.
    Wolk K, Hoflich C, Zuckermann-Becker H, Docke WD, Volk HD, Sabat R (2007) Reduced monocyte CD86 expression in postinflammatory immunodeficiency. Crit. Care Med. 35:458–67.CrossRefPubMedGoogle Scholar
  117. 117.
    Pangault C, Le Tulzo Y, Tattevin P, Guilloux V, Bescher N, Drenou B (2006) Down-modulation of granulocyte macrophage-colony stimulating factor receptor on monocytes during human septic shock. Crit. Care Med. 34:1193–201.CrossRefPubMedGoogle Scholar
  118. 118.
    Pachot A, Faudot C, Cazalis MA, Mougin B, Lepape A, Monneret G (2007) Decreased expression of CX3CR1 in septic shock: transcriptional regulation by LPS, cortisol and soluble fractalkine. Inflammation Res. 56:S131.Google Scholar
  119. 119.
    Shelley O, Murphy T, Paterson H, Mannick JA, Lederer JA (2003) Interaction between the innate and adaptive immune systems is required to survive sepsis and control inflammation after injury. Shock 20:123–9.CrossRefPubMedGoogle Scholar
  120. 120.
    Hotchkiss RS, Osmon SB, Chang KC, Wagner TH, Coopersmith CM, Karl IE (2005) Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J. Immunol. 174:5110–8.CrossRefPubMedGoogle Scholar
  121. 121.
    Menges T, Engel L, Welters I, Wagner RM, Little S, Ruwoldt R, Wollbrueck M, Hempelmann G (1999) Changes in blood lymphocyte populations after multiple trauma: association with posttraumatic complications. Crit. Care Med. 27:733–40.CrossRefPubMedGoogle Scholar
  122. 122.
    Felmet KA, Hall MW, Clark RS, Jaffe R, Carcillo JA (2005) Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol. 174:3765–72.CrossRefPubMedGoogle Scholar
  123. 123.
    Spolarics Z, Siddigi M, Siegel JH, Garcia ZC, Stein DS, Denny T, Deitch EA (2003) Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients. Crit. Care Med. 31: 1722–9.CrossRefPubMedGoogle Scholar
  124. 124.
    Wick M, Kollig E, Muhr G, Koller M (2000) The potential pattern of circulating lymphocytes TH1/TH2 is not altered after multiple injuries. Arch. Surg. 135:1309–14.CrossRefPubMedGoogle Scholar
  125. 125.
    Venet F, Lepape A, Debard AL, Bienvenu J, Bohe J, Monneret G (2004) The Th2 response as monitored by CRTH2 or CCR3 expression is severely decreased during septic shock. Clin. Immunol. 113:278–84.CrossRefPubMedGoogle Scholar
  126. 126.
    Venet F, Pachot A, Debard AL, Bohe J, Bienvenu J, Lepape A, Monneret G (2004) Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25 lymphocytes. Crit. Care Med. 32:2329–31.CrossRefPubMedGoogle Scholar
  127. 127.
    Venet F, Bohe J, Debard AL, Bienvenu J, Lepape A, Monneret G (2005) Both percentage of gammadelta T lymphocytes and CD3 expression are reduced during septic shock. Crit. Care. Med. 33:2836–40.CrossRefPubMedGoogle Scholar
  128. 128.
    Scumpia PO, et al. (2007) Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood 110:3673–81.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22:531–62.CrossRefPubMedGoogle Scholar
  130. 130.
    MacConmara MP, et al. (2006) Increased CD4+ CD25+ T regulatory cell activity in trauma patients depresses protective Th1 immunity. Ann. Surg. 244:514–23.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Scumpia PO, et al. (2006) Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis. J. Immunol. 177: 7943–9.CrossRefPubMedGoogle Scholar
  132. 132.
    Wisnoski N, Chung CS, Chen Y, Huang X, Ayala A (2006) The contribution of CD4+CD25+ T-regulatory-cells to immune suppression in sepsis. Shock 27:251–7.CrossRefGoogle Scholar
  133. 133.
    Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J. Immunol. 176: 6523–31.CrossRefPubMedGoogle Scholar
  134. 134.
    Chen X, Bäumel M, Männel DN, Howard OM, Oppenheim JJ (2007) Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179:154–61.CrossRefPubMedGoogle Scholar
  135. 135.
    Schneider DF, Glenn CH, Faunce DE (2007) Innate lymphocyte subsets and their immunoregulatory roles in burn injury and sepsis. J. Burn Care Res. 28:365–79.CrossRefPubMedGoogle Scholar
  136. 136.
    Matsushima A, et al. (2004) Early activation of gammadelta T lymphocytes in patients with severe systemic inflammatory response syndrome. Shock 22:11–5.CrossRefPubMedGoogle Scholar
  137. 137.
    Chang KC, Unsinger J, Davis CG, Schwulst SJ, Muenzer JT, Strasser A, Hotchkiss RS (2007) Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J. 21:708–19.CrossRefPubMedGoogle Scholar
  138. 138.
    Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 6:813–22.CrossRefPubMedGoogle Scholar
  139. 139.
    Hotchkiss RS, et al. (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 27:1230–51.CrossRefPubMedGoogle Scholar
  140. 140.
    Hotchkiss RS, et al. (2001) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 166:6952–63.CrossRefPubMedGoogle Scholar
  141. 141.
    Toti P, De Felice C, Occhini R, Schuerfeld K, Stumpo M, Epistolato MC, Vatti R, Buonocore G (2004) Spleen depletion in neonatal sepsis and chorioamnionitis. Am. J. Clin. Pathol. 122:765–71.CrossRefPubMedGoogle Scholar
  142. 142.
    Le Tulzo Y, et al. (2002) Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock 18:487–94.CrossRefPubMedGoogle Scholar
  143. 143.
    Bilbault P, et al. (2004) Transient Bcl-2 gene down-expression in circulating mononuclear cells of severe sepsis patients who died despite appropriate intensive care. Intensive. Care Med. 30:408–15.CrossRefPubMedGoogle Scholar
  144. 144.
    Bilbault P, Lavaux T, Launoy A, Gaub MP, Meyer N, Oudet P, Pottecher T, Jaeger A, Schneider F (2007) Influence of drotrecogin alpha (activated) infusion on the variation of Bax/Bcl-2 and Bax/Bcl-xl ratios in circulating mononuclear cells: a cohort study in septic shock patients. Crit. Care Med. 35:69–75.CrossRefPubMedGoogle Scholar
  145. 145.
    Williams TE, Ayala A, Chaudry IH (1997) Inducible macrophage apoptosis following sepsis is mediated by cysteine protease activation and nitric oxide release. J. Surg. Res. 70:113–8.CrossRefPubMedGoogle Scholar
  146. 146.
    Adrie C, et al. (2001) Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am. J. Respir. Crit. Care Med. 164:389–95.CrossRefPubMedGoogle Scholar
  147. 147.
    Swan R, Chung CS, Albina J, Cioffi W, Perl M, Ayala A (2007) Polymicrobial sepsis enhances clearance of apoptotic immune cells by splenic macrophages. Surgery 142:253–61.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Hoesel LM, et al. (2005) Harmful and protective roles of neutrophils in sepsis. Shock 24:40–7.CrossRefPubMedGoogle Scholar
  149. 149.
    Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, Baudouin SV (2001) Circulating endothelial cells in patients with septic shock. Am. J. Respir. Crit. Care Med. 163:195–200.CrossRefPubMedGoogle Scholar
  150. 150.
    Roth GA, et al. (2004) Elevated serum levels of epithelial cell apoptosis-specific cytokeratin 18 neoepitope m30 in critically ill patients. Shock 22: 218–20.CrossRefPubMedGoogle Scholar
  151. 151.
    Kumar A, Kumar A, Michael P, Brabant D, Parissenti AM, Ramana CV, Xu X, Parrillo JE (2005) Human serum from patients with septic shock activates transcription factors STAT1, IRF1, and NF-kappaB and induces apoptosis in human cardiac myocytes. J. Biol. Chem. 280:42619–26.CrossRefPubMedGoogle Scholar
  152. 152.
    Minambres E, Lopez-Escribano H, Ballesteros MA, Pena M, Lopez-Hoyos M (2005) Apoptosis of Jurkat cells induced by serum of patients with acute severe brain injury. Intensive Care Med. 31:791–8.CrossRefPubMedGoogle Scholar
  153. 153.
    Ballesteros MA, Lopez-Hoyos M, Munoz P, Marin MJ, Minambres E (2007) Apoptosis of neuronal cells induced by serum of patients with acute brain injury: a new in vitro prognostic model. Intensive Care Med. 33:58–65.CrossRefPubMedGoogle Scholar
  154. 154.
    De Freitas I, Fernandez-Somoza M, Essenfeld-Sekler E, Cardier JE (2004) Serum levels of the apoptosis-associated molecules, tumor necrosis factor-alpha/tumor necrosis factor type-I receptor and Fas/FasL, in sepsis. Chest 125:2238–46.CrossRefPubMedGoogle Scholar
  155. 155.
    Papathanassoglou ED, Moynihan JA, McDermott MP, Ackerman MH (2001) Expression of Fas (CD95) and Fas ligand on peripheral blood mononuclear cells in critical illness and association with multiorgan dysfunction severity and survival. Crit. Care Med. 29:709–18.CrossRefPubMedGoogle Scholar
  156. 156.
    Hotchkiss RS, Coopersmith CM, Karl IE (2005) Prevention of lymphocyte apoptosis: a potential treatment of sepsis? Clin. Infect. Dis. 41:S465–9.CrossRefPubMedGoogle Scholar
  157. 157.
    Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A (2007) The apoptotic pathway as a therapeutic target in sepsis. Curr. Drug Targets 8:493–500.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Greineder CF, Nelson PW, Dressel AL, Erba HP, Younger JG (2007) In vitro and in silico analysis of annexin V binding to lymphocytes as a biomarker in emergency department sepsis studies. Acad. Emerg. Med. 14:763–71.CrossRefPubMedGoogle Scholar
  159. 159.
    Cobb JP, O’Keefe GE (2004) Injury research in the genomic era. Lancet 363:2076–83.CrossRefPubMedGoogle Scholar
  160. 160.
    Feezor RJ, Cheng A, Paddock HN, Baker HV, Moldawer LL (2005) Functional genomics and gene expression profiling in sepsis: beyond class prediction. Clin. Infect. Dis. 41(Suppl 7):S427–35.CrossRefPubMedGoogle Scholar
  161. 161.
    Feezor RJ, Oberholzer C, Baker HV, Novick D, Rubinstein M, Moldawer LL et al. (2003) Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria. Infect. Immun. 71:5803–13.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Huang Q, et al. (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294:870–5.CrossRefPubMedGoogle Scholar
  163. 163.
    Zhao B, Bowden RA, Stavchansky SA, Bowman PD (2001) Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays. Am. J. Physiol. Cell. Physiol. 281:C1587–95.CrossRefPubMedGoogle Scholar
  164. 164.
    Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 99:1503–8.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Yu SL, et al. (2004) Differential gene expression in gram-negative and gram-positive sepsis. Am. J. Respir. Crit. Care Med. 169:1135–43.CrossRefPubMedGoogle Scholar
  166. 166.
    Chinnaiyan AM, et al. (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am. J. Pathol. 159:1199–1209.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Chung TP, et al. (2006) Molecular diagnostics in sepsis: from bedside to bench. J. Am. Coll. Surg. 203:585–98.CrossRefPubMedGoogle Scholar
  168. 168.
    Prucha M, et al. (2004) Expression profiling: toward an application in sepsis diagnostics. Shock 22:29–33.CrossRefPubMedGoogle Scholar
  169. 169.
    Johnson SB, Lissauer M, Bochicchio GV, Moore R, Cross AS, Scalea TM (2007) Gene expression profiles differentiate between sterile SIRS and early sepsis. Ann. Surg. 245:611–21.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Ramilo O, et al. (2007). Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 109:2066–77.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Feezor RJ, et al. (2004) Genomic and proteomic determinants of outcome in patients undergoing thoracoabdominal aortic aneurysm repair. J. Immunol. 172:7103–9.CrossRefPubMedGoogle Scholar
  172. 172.
    Biberthaler P, et al. (2003) Initial RNAexpression in human monocytes after multiple injury: a screening pilot study on potentially trauma-sensitive factors by using the microarray-technique. Eur. J. Med. Res. 8:473–84.PubMedGoogle Scholar
  173. 173.
    Schneider EM, et al. (2006) MAPkinase gene expression, as determined by microarray analysis, distinguishes uncomplicated from complicated reconstitution after major surgical trauma. Ann. N. Y. Acad. Sci. 1090:429–44.CrossRefPubMedGoogle Scholar
  174. 174.
    Bogner V, et al. (2007) Gene expression profiles are influenced by ISS, MOF, and clinical outcome in multiple injured patients: a genome-wide comparative analysis. Langenbecks Arch. Surg. 392:255–65.CrossRefPubMedGoogle Scholar
  175. 175.
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–70.CrossRefPubMedGoogle Scholar
  176. 176.
    Wong HR, et al. (2007) Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol. Genomics 30:146–55.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Shanley TP, et al. (2007) Genome-level longitudinal expression of signaling pathways and gene networks in pediatric septic shock. Mol. Med. 13:495–508.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    de Reynies A, et al. (2006) Comparison of the latest commercial short and long oligonucleotide microarray technologies. BMC Genomics 7:51.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Bammler T, et al. (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat. Methods 2:351–6.CrossRefPubMedGoogle Scholar
  180. 180.
    Irizarry RA, et al. (2005) Multiple-laboratory comparison of microarray platforms. Nat. Methods 2:345–50.CrossRefPubMedGoogle Scholar
  181. 181.
    Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW (2005) Significance analysis of time course microarray experiments. Proc. Natl. Acad. Sci. U. S. A. 102:12837–42.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Calvano SE, et al. (2005) Anetwork-based analysis of systemic inflammation in humans. Nature 437:1032–7.CrossRefPubMedGoogle Scholar
  183. 183.
    Dahmer MK, Randolph A, Vitali S, Quasney MW (2005) Genetic polymorphisms in sepsis. Pediatr. Crit. Care Med. 6:S61–73.CrossRefPubMedGoogle Scholar
  184. 184.
    Papathanassoglou ED, Giannakopoulou MD, Bozas E (2006) Genomic variations and susceptibility to sepsis. AACN Adv. Crit. Care 17:394–422.PubMedGoogle Scholar
  185. 185.
    Kalechman Y, Gafter U, Gal R, Rushkin G, Yan D, Albeck M, Sredni B (2002) Anti-IL-10 therapeutic strategy using the immunomodulator AS101 in protecting mice from sepsis-induced death: dependence on timing of immunomodulating intervention. J. Immunol. 169:384–92.CrossRefPubMedGoogle Scholar
  186. 186.
    Murphey ED, Sherwood ER (2006) Bacterial clearance and mortality are not improved by a combination of IL-10 neutralization and IFN-gamma administration in a murine model of post-CLP immunosuppression. Shock 26:417–24.CrossRefPubMedGoogle Scholar
  187. 187.
    Polk HC Jr, Cheadle WG, Livingston DH, Rodriguez JL, Starko KM, Izu AE, Jaffe HS, Sonnenfeld G (1992) Arandomized prospective clinical trial to determine the efficacy of interferongamma in severely injured patients. Am. J. Surg. 163:191–6.CrossRefPubMedGoogle Scholar
  188. 188.
    Dries DJ, et al. (1994) Effect of interferon gamma on infection-related death in patients with severe injuries: a randomized, double-blind, placebo-controlled trial. Arch. Surg. 129:1031–41.CrossRefPubMedGoogle Scholar
  189. 189.
    Presneill JJ, Harris T, Stewart AG, Cade JF, Wilson JW (2002) A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am. J. Respir. Crit. Care Med. 166:138–43.CrossRefPubMedGoogle Scholar
  190. 190.
    Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR (2005) Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest 127:2139–50.CrossRefPubMedGoogle Scholar
  191. 191.
    Nakos G, et al. (2002) Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-γ. Crit. Care Med. 30:1488–94.CrossRefPubMedGoogle Scholar
  192. 192.
    Leaver SK, Finney SJ, Burke-Gaffney A, Evans TW (2007) Sepsis since the discovery of Toll-like receptors: disease concepts and therapeutic opportunities. Crit. Care Med. 35:1404–10.CrossRefPubMedGoogle Scholar
  193. 193.
    Alpdogan O, van den Brink MR (2005) IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol. 26:56–64.CrossRefPubMedGoogle Scholar
  194. 194.
    Snyder KM, Mackall CL, Fry TJ (2006) IL-7 in allogeneic transplant: clinical promise and potential pitfalls. Leuk. Lymphoma 47:1222–8.CrossRefPubMedGoogle Scholar
  195. 195.
    Turgeon AF, Hutton B, Fergusson DA, McIntyre L, Tinmouth AA, Cameron DW, Hebert PC (2007) Meta-analysis: intravenous immunoglobulin in critically ill adult patients with sepsis. Ann. Intern. Med. 146:193–203.CrossRefPubMedGoogle Scholar
  196. 196.
    Norrby-Teglund A, Haque KN, Hammarstrom L (2006) Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in relation to microbiological etiology and severity of sepsis. J. Intern. Med. 260:509–16.CrossRefPubMedGoogle Scholar
  197. 197.
    Weaver JG, Rouse MS, Steckelberg JM, Badley AD (2004) Improved survival in experimental sepsis with an orally administered inhibitor of apoptosis. FASEB J. 18:1185–91.CrossRefPubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Guillaume Monneret
    • 1
    • 5
  • Fabienne Venet
    • 2
  • Alexandre Pachot
    • 3
  • Alain Lepape
    • 4
  1. 1.Hospices civils de Lyon, Immunology laboratoryHopital E. HerriotLyonFrance
  2. 2.Division of Surgical ResearchRhode Island Hospital/Brown UniversityProvidenceUSA
  3. 3.Joint Unit Hospices Civils de Lyon-bioMérieuxHôpital Edouard HerriotLyonFrance
  4. 4.Hospices civils de Lyon, Centre Hospitalier Lyon-SudIntensive Care UnitLyonFrance
  5. 5.Flow Cytometry Unit, Immunology LaboratoryHôpital E. HerriotLyon cedex 03France

Personalised recommendations