Molecular Medicine

, Volume 14, Issue 1–2, pp 2–10 | Cite as

Neoplastic Transformation of Human Small Airway Epithelial Cells Induced by Arsenic

  • Gengyun Wen
  • Gloria M. Calaf
  • Michael A. Partridge
  • Carlos Echiburú-Chau
  • Yongliang Zhao
  • Sarah Huang
  • Yunfei Chai
  • Bingyan Li
  • Burong Hu
  • Tom K. Hei
Research Article


Human small airway epithelial cells (SAECs) previously immortalized with human telomerase reverse transcriptase (h-TERT) were continuously treated with sodium arsenite at a dose of 0.5 µg/mL in culture for up to 6 months. Arsenic-treated cells progressively displayed an increase in transformed phenotype including enhanced growth saturation density, plating efficiency, and anchorage-independent growth and invasion capability compared with their nontreated control cells. To determine whether arsenic-induced cell transformation was associated with genomic instability, treated and control cells were also analyzed for micronuclei formation. A 4.8-fold increase in micronuclei incidence in arsenic-treated cells was detected in conjunction with increased N-phosphonacetyl-l-aspartate (PALA)-resistant characteristics. In addition, arsenic-treated cells showed an increase in c-H-ras, c-myc, and c-fos protein expression relative to controls. The change in oncoprotein expression correlated with a decrease in wildtype p53 expression and hyperphosphorylated retinoblastoma. Taken together, these results strongly suggest that h-TERT immortalized human small airway epithelial cells underwent step-wise transformation after inorganic arsenic treatment.


  1. 1.
    Navarro Silvera SA, Rohan TE. (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18:7–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Chan P, Huff JE. (1997) Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Environ. Carcinog. Ecotox. Rev. 15:83–122.CrossRefGoogle Scholar
  3. 3.
    Huang C, Ke Q, Costa M, Shi X. (2004) Molecular mechanisms of arsenic carcinogenesis. Mol. Cell Biochem. 255:57–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Yager JW, Wiencke JK. (1993) Enhancement of chromosomal damage by arsenic: implications for mechanism. Environ. Health. Perspect. 101:79–82.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang JJ, Smith KR. (2007) Household air pollution from coal and biomass fuels in China: measurements, health impacts, and interventions. Environ. Health Perspect. 115:848–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Shi HL, Shi XL, Liu KJ. (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell Biochem. 255:67–78.CrossRefPubMedGoogle Scholar
  7. 7.
    IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic. Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr. Eval. Carcinog. Risks Hum. 84:1–477.Google Scholar
  8. 8.
    Hertz-Picciotto I, Smith SH, Holtzman D, Lipsett M, Alexeeff G. (1992) Synergism between occupational arsenic exposure and smoking in the induction of lung cancer. Epidemiology 3:23–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Kusiak RA, Ritchie AC, Muller AC, Springer J. (1993) Mortality from lung cancer in Ontario uranium miners. Br. J. Ind. Med. 50:920–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferreccio C, Gonzalez C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH. (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Lubin JH, Beane Freeman LE, Cantor KP. (2007) Inorganic arsenic in drinking water: an evolving public health concern. J. Natl. Cancer Inst. 99:906–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH. (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J. Natl. Cancer Inst. 99:920–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Barrett JC, Lamb PW, Wang TC, Lee TC (1989) Mechanisms of arsenic-induced cell transformation. Biol. Trace Elem. Res. 21:421–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Z, Rossman R. (1993) Stable and inducible arsenite resistance in Chinese hamster cells. Toxicol. Appl. Pharmacol. 118:80–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee TC, Oshimura M, Barrett JC. (1985) Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6:1421–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Landolph J. (1989) Molecular and cellular mechanisms of transformation of C3H/10T1/2 Cl 8 and diploid human fibroblasts by unique carcinogenic, nonmutagenic metal compounds: a review Biol. Trace Elem. Res. 21:459–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakamuro K, Sayato YC. (1981) Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic. Mutat. Res. 88: 73–80.CrossRefPubMedGoogle Scholar
  18. 18.
    Natarajan AT, Boei JJ, Darroudi F, Van Diemen PC, Doulout F, Hande MP, Ramalho AT. (1996) Current cytogenetic methods for detecting exposure and effects of mutagens and carcinogens. Environ. Health Perspect. 104:445–58.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee TC, Tanaka N, Lamb PW, Gilmer TM, Barrett JC. (1988) Induction of gene amplification by arsenic. Science 241:79–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Vega L, Gonsebatt ME, Ostrosky-Wegman P. (1995) Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutat. Res. 334:365–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Keyse SM, Applegate LA, Tromvoukis Y, Tyrell RM. (1990) Oxidative stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol. Cell Biol. 10:4967–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang CS, Ma WY, Li JX, Goranson A, Dong ZG. (1999) Requirement of Erk, but not JNK, for arsenite-induced cell transformation. J. Biol. Chem. 274:14595–601.CrossRefPubMedGoogle Scholar
  23. 23.
    Meng ZQ, Meng NY. (2000) Effects of arsenic on blast transformation and DNA synthesis of human blood lymphocytes. Chemosphere 41:115–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao CQ, Young MR, Diwan BA, Coogan TP, Walkes MP. (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl. Acad. Sci. U. S. A. 94:10907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bryan TM, Reddel RR. (1994) SV40-induced immortalization of human cells. Crit. Rev. Oncog. 5:331–57, 1994.CrossRefPubMedGoogle Scholar
  26. 26.
    Willey JC, Broussoud A, Sleemi A, Bennett WO, Cerutti BP, Harris CC. (1991) Immortalization of normal human bronchial epithelial cells by human papillomaviruses 16 or 18. Cancer Res. 51:5370–7.PubMedGoogle Scholar
  27. 27.
    Achanzar WE, Brambila EM, Diwan BA, Webber MM, Waalkes MP. (2002) Inorganic arsenite-induced malignant transformation of human prostate epithelial cells. J. Natl. Cancer Inst. 94:1888–91.CrossRefPubMedGoogle Scholar
  28. 28.
    Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK. (2005) Immortalization of human small airway epithelial cells by ectopic expression of telomerase. Carcinogenesis 26:725–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Fenech M. (2000) The in vitro micronucleus technique. Mutat. Res. 455:81–95.CrossRefPubMedGoogle Scholar
  30. 30.
    Calaf GM, Hei TK. (2000) Establishment of a radiation and estrogen-induced breast cancer model. Carcinogenesis 21:769–76.CrossRefPubMedGoogle Scholar
  31. 31.
    Hamada S, Nakajima K, Serikawa T, Hayashi M. (2003) The effect of aging on the results of the rat micronucleus assay. Mutagenesis 18:273–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Piao CQ, Hei TK. (2001) Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions. Radiat. Res. 155:263–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Otto E, McCord S, Tlsty TD. (1989) Increased incidence of CAD gene amplification in tumorigenic rat lines as an indicator of genomic instability of neoplastic cells. J. Biol. Chem. 264:3390–6.PubMedGoogle Scholar
  34. 34.
    Wahl GM, Padgett RA, Stark GR. (1979) Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N-(phosphonacetyl)-l-aspartate-resistant hamster cells. J. Biol. Chem. 254:8679–89.PubMedGoogle Scholar
  35. 35.
    Lemoine FJ, Marriott SJ. (2002) Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein. Tax Oncogene 21: 7230–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Chernova OB, Chernov MV, Ishizaka Y, Agarwal ML, Stark GR. (1998) MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-l-aspartate-treated cells, permitting CAD gene amplification. Mol. Cell Biol. 18:536–45.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mondello C, Riboni R, Rady M, Giulotto E, Nuzzo F. (1995) Gene amplification in Chinese hamster DNA repair deficient mutants. Mutat. Res. 346:61–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Reichmann E. (1994) Oncogenes and epithelial cell transformation. Semin. Cancer Biol. 5:157–65.PubMedGoogle Scholar
  39. 39.
    Rosenwald IB. (2004) The role of translation in neoplastic transformation from a pathologist’s point of view. Oncogene 23:3230–47.CrossRefPubMedGoogle Scholar
  40. 40.
    Vogelstein B, Fearson ER, Bose JL. (1988) Genetic alteration during colorectal-tumor development. N. Engl. J. Med. 319:525–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Ling V, Chambers AF, Harris JF, Hill RP. (1985) Quantitative genetic analysis of tumor progression. Cancer Metastasis Rev. 4:173–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu J, et al. (2006) Further studies on aberrant gene expression associated with arsenic-induced malignant transformation in rat liver TRL1215 cells. Toxicol. Appl. Pharmacol. 216:407–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP. (2001) Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol. Appl. Pharmacol. 175:260–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Menendez D, Mora G, Salazar AM, Ostrosky-Wegman P. (2001) ATM status confers sensitivity to arsenic cytotoxic effects. Mutagenesis 16:443–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Hsieh HJ, Chen JT, Hsieh SH, Jee GS, Chen CJ. (1994) Arsenic-related Bowen’s disease and paraquat-related skin cancerous lesions showed no detectable ras and p53 gene alterations. Cancer Lett. 28:59–65.CrossRefGoogle Scholar
  46. 46.
    Chanda S, et al. (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol. Sci. 89:431–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Boonchai W, Walsh M, Cummings M, Chenevix-Trench G. (2000) Expression of p53 in arsenic-related and sporadic basal cell carcinoma. Arch. Dermatol. 136:195–8.PubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Gengyun Wen
    • 1
  • Gloria M. Calaf
    • 1
    • 2
  • Michael A. Partridge
    • 1
  • Carlos Echiburú-Chau
    • 2
  • Yongliang Zhao
    • 1
  • Sarah Huang
    • 1
  • Yunfei Chai
    • 1
  • Bingyan Li
    • 1
    • 3
  • Burong Hu
    • 1
  • Tom K. Hei
    • 1
    • 4
  1. 1.Center for Radiological ResearchColumbia University Medical Center, VC11-218New YorkUSA
  2. 2.Instituto de Alta InvestigaciónUniversidad de TarapacáAricaChile
  3. 3.School of Radiation Medicine and Public HealthSoochow UniversitySozhouChina
  4. 4.Department of Environmental Health SciencesColumbia University Medical CenterNew YorkUSA

Personalised recommendations