Molecular Medicine

, Volume 13, Issue 9–10, pp 495–508 | Cite as

Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock

  • Thomas P. Shanley
  • Natalie Cvijanovich
  • Richard Lin
  • Geoffrey L. Allen
  • Neal J. Thomas
  • Allan Doctor
  • Meena Kalyanaraman
  • Nancy M. Tofil
  • Scott Penfil
  • Marie Monaco
  • Kelli Odoms
  • Michael Barnes
  • Bhuvaneswari Sakthivel
  • Bruce J. Aronow
  • Hector R. Wong
Research Article


We have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks In children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n = 30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n = 15). Venn analysis demonstrated 239 unique genes in the day one dataset, 598 unique genes in the day three dataset, and 1,906 genes common to both datasets. Functional analyses demonstrated time-dependent, differential regulation of genes involved in multiple signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biology were persistently downregulated on both day one and day three. Further analyses demonstrated large scale, persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock subjected to longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses.



Additional Genomics of Pediatric SIRS/Septic Shock Investigators: Robert J. Freishtat, M.D., M.P.H., (Children’s National Medical Center, Washington, D.C.); Mary Ann Tagavilla, M.D. (Cincinnati Children’s Hospital Medical Center, Cincinnati, OH); Julie Simon, R.N. (Children’s Hospital and Research Center Oakland, Oakland, CA); Carey Roth Bayer, Ed.D., R.N. (The Children’s Hospital of Philadelphia, Philadelphia, PA); Joseph Hess, R.N. (Penn State Children’s Hospital, Hershey, PA); Margaret Winkler, M.D. (The University of Alabama at Birmingham, Birmingham, AL); Robert Fitzgerald, M.D. (Devos Children’s Hospital, Grand Rapids, MI); Gwenn McLaughlin, M.D. (Jackson Memorial Hospital, Miami, FL); Cheri Landers, M.D. (Kentucky Children’s Hospital, Lexington, KY); Gary Kohn, M.D. (Morristown Memorial Hospital, Morristown, NJ); Paul Checchia, M.D. (St. Louis Children’s Hospital, St. Louis, MO); Jose Gutierrez, M.D. (Pediatric Critical Care of Arizona, Phoenix, AZ); Nick Anas, M.D. (Children’s Hospital of Orange County, Orange, CA) and Steve Shane, M.D. (Washoe Medical Center, Reno, NV). Supported by a grant from the National Institute of General Medical Sciences (RO1 GM064619), and The Amanda Kanowitz Foundation (


  1. 1.
    Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. (2003) The epidemiology of severe sepsis in children in the United States. Am. J. Respir. Crit. Care Med. 167:695–701.CrossRefGoogle Scholar
  2. 2.
    Watson RS, Carcillo JA. (2005) Scope and epidemiology of pediatric sepsis. Pediatr. Crit. Care Med. 6:S3–5.CrossRefGoogle Scholar
  3. 3.
    Shanley TP, Hallstrom C, Wong HR. (2006) Sepsis. In: Fuhrman BP, Zimmerman JJ (eds.) Pediatric Critical Care Medicine. Mosby, St. Louis, p. 1474–93.CrossRefGoogle Scholar
  4. 4.
    Carcillo JA, Fields AI. (2002) Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit. Care Med. 30:1365–78.CrossRefGoogle Scholar
  5. 5.
    Shanley TP, Wong HR. (2003) Molecular genetics in the pediatric intensive care unit. Crit. Care Clin. 19:577–94.CrossRefGoogle Scholar
  6. 6.
    Wong HR et al. (2007) Genome level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol Genomics. 30:146–55.CrossRefGoogle Scholar
  7. 7.
    Calvano SE et al. (2005) A network-based analysis of systemic inflammation in humans. Nature. 437:1032–7.CrossRefGoogle Scholar
  8. 8.
    Chinnaiyan AM et al. (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am. J. Pathol. 159:1199–209.CrossRefGoogle Scholar
  9. 9.
    Cobb JP et al. (2005) Application of genome-wide expression analysis to human health and disease. Proc. Natl. Acad. Sci. U. S. A. 102:4801–6.CrossRefGoogle Scholar
  10. 10.
    Prucha M et al. (2004) Expression profiling: toward an application in sepsis diagnostics. Shock. 22:29–33.CrossRefGoogle Scholar
  11. 11.
    Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G. (2006) Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol. Lett. 106: 63–71.CrossRefGoogle Scholar
  12. 12.
    Ramilo O et al. (2007) Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 109:2066–77.CrossRefGoogle Scholar
  13. 13.
    Goldstein B, Giroir B, Randolph A. (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6:2–8.CrossRefGoogle Scholar
  14. 14.
    Pollack MM, Patel KM, Ruttimann UE. (1997) The Pediatric Risk of Mortality III—Acute Physiology Score (PRISM III-APS): a method of assessing physiologic instability for pediatric intensive care unit patients. J. Pediatr. 131:575–81.CrossRefGoogle Scholar
  15. 15.
    Wilkinson JD, Pollack MM, Ruttimann UE, Glass NL, Yeh TS. (1986) Outcome of pediatric patients with multiple organ system failure. Crit. Care Med. 14:271–4.CrossRefGoogle Scholar
  16. 16.
    Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. (1996) Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 109:1033–7.CrossRefGoogle Scholar
  17. 17.
    Zimmermann N et al. (2003) Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J. Clin. Invest. 111:1863–74.CrossRefGoogle Scholar
  18. 18.
    Irizarry RA et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–64.CrossRefGoogle Scholar
  19. 19.
    Dennis G Jr et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4:P3.CrossRefGoogle Scholar
  20. 20.
    Thomas PD et al. (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13:2129–41.CrossRefGoogle Scholar
  21. 21.
    Mi H, Guo N, Kejariwal A, Thomas PD. (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35:D247–52.CrossRefGoogle Scholar
  22. 22.
    Thomas PD et al. (2006) Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 34:W645–50.CrossRefGoogle Scholar
  23. 23.
    Malatack JJ, Blatt J, Penchansky L. (1997) Hematology and oncology. In: Zittelli BJ, Davis HW (eds.) Atlas of Pediatric Physical Diagnosis. Mosby, St. Louis. p. 305–41.Google Scholar
  24. 24.
    Hotchkiss RS, Karl IE. (2003) The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348: 138–50.CrossRefGoogle Scholar
  25. 25.
    Abraham E. (1999) Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med. 25:556–66.CrossRefGoogle Scholar
  26. 26.
    van den Berghe G et al. (2001) Intensive insulin therapy in the critically ill patients. N. Engl. J. Med. 345:1359–67.CrossRefGoogle Scholar
  27. 27.
    Van den Berghe G et al. (2006) Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 354: 449–461.CrossRefGoogle Scholar
  28. 28.
    Munford RS, Pugin J. (2001) Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am. J. Respir. Crit. Care. Med. 163:316–21.CrossRefGoogle Scholar
  29. 29.
    Mahidhara R, Billiar TR. (2000) Apoptosis in sepsis. Crit. Care Med. 28:N105–13.CrossRefGoogle Scholar
  30. 30.
    Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA. (1995) Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury. J. Immunol. 154:3454–60.PubMedGoogle Scholar
  31. 31.
    Volk HD et al. (1996) Monocyte deactivation-rationale for a new therapeutic strategy in sepsis. Intensive Care Med. 22 Suppl 4:S474–81.CrossRefGoogle Scholar
  32. 32.
    Docke WD et al. (1997) Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat. Med. 3:678–81.CrossRefGoogle Scholar
  33. 33.
    Monneret G et al. (2004) The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol. Lett. 95:193–8.CrossRefGoogle Scholar
  34. 34.
    Le Tulzo Y et al. (2004) Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. Am. J. Respir. Crit. Care Med. 169:1144–51.CrossRefGoogle Scholar
  35. 35.
    Heidecke CD et al. (1999) Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am. J. Surg. 178:288–92.CrossRefGoogle Scholar
  36. 36.
    Felmet KA, Hall MW, Clark RS, Jaffe R, Carcillo JA. (2005) Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol. 174:3765–72.CrossRefGoogle Scholar
  37. 37.
    Hotchkiss RS et al. (1999) Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J. Immunol. 162:4148–56.PubMedGoogle Scholar
  38. 38.
    Wesche DE, Lomas-Neira JL, Perl M, Chung CS, Ayala A. (2005) Leukocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol. 78: 325–37.CrossRefGoogle Scholar
  39. 39.
    Chung CS, Song GY, Lomas J, Simms HH, Chaudry IH, Ayala A. (2003) Inhibition of Fas/Fas ligand signaling improves septic survival: differential effects on macrophage apoptotic and functional capacity. J. Leukoc. Biol. 74: 344–51.CrossRefGoogle Scholar
  40. 40.
    Chang KC et al. (2007) Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. Faseb. J. 21:708–19.CrossRefGoogle Scholar
  41. 41.
    Unsinger J, Herndon JM, Davis CG, Muenzer JT, Hotchkiss RS, Ferguson TA. (2006) The role of TCR engagement and activation-induced cell death in sepsis-induced T cell apoptosis. J. Immunol. 177:7968–73.CrossRefGoogle Scholar
  42. 42.
    Schwulst SJ et al. (2006) Agonistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis. J. Immunol. 177:557–65.CrossRefGoogle Scholar
  43. 43.
    Hotchkiss RS et al. (2006) TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J. Immunol. 176:5471–7.CrossRefGoogle Scholar
  44. 44.
    Hotchkiss RS, Osmon SB, Chang KC, Wagner TH, Coopersmith CM, Karl IE. (2005) Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J. Immunol. 174:5110–8.CrossRefGoogle Scholar
  45. 45.
    Scumpia PO et al. (2006) Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis. J. Immunol. 177: 7943–9.CrossRefGoogle Scholar
  46. 46.
    Hotchkiss RS et al. (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 27:1230–51.CrossRefGoogle Scholar
  47. 47.
    Failla ML. (2003) Trace elements and host defense: recent advances and continuing challenges. J. Nutr. 133:1443S–7S.CrossRefGoogle Scholar
  48. 48.
    Fraker PJ, King LE. (2004) Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 24:277–98.CrossRefGoogle Scholar
  49. 49.
    Ibs KH, Rink L. (2003) Zinc-altered immune function. J. Nutr. 133:1452S–6S.CrossRefGoogle Scholar
  50. 50.
    King LE, Osati-Ashtiani F, Fraker PJ. (2002) Apoptosis plays a distinct role in the loss of precursor lymphocytes during zinc deficiency in mice. J. Nutr. 132:974–9.CrossRefGoogle Scholar
  51. 51.
    Kitamura H et al. (2006) Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 7:971–7.CrossRefGoogle Scholar
  52. 52.
    Rink L, Haase H. (2007) Zinc homeostasis and immunity. Trends Immunol. 28:1–4.CrossRefGoogle Scholar
  53. 53.
    Shankar AH, Prasad AS. (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68:447S–63S.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Thomas P. Shanley
    • 1
  • Natalie Cvijanovich
    • 2
  • Richard Lin
    • 3
  • Geoffrey L. Allen
    • 4
  • Neal J. Thomas
    • 5
  • Allan Doctor
    • 6
  • Meena Kalyanaraman
    • 7
  • Nancy M. Tofil
    • 8
  • Scott Penfil
    • 9
  • Marie Monaco
    • 10
  • Kelli Odoms
    • 10
  • Michael Barnes
    • 10
  • Bhuvaneswari Sakthivel
    • 10
  • Bruce J. Aronow
    • 10
  • Hector R. Wong
    • 10
    • 11
  1. 1.C.S. Mott Children’s HospitalUniversity of MichiganAnn ArborUSA
  2. 2.Children’s Hospital and Research Center OaklandOaklandUSA
  3. 3.The Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Children’s Mercy HospitalKansas CityUSA
  5. 5.Penn State Children’s HospitalHersheyUSA
  6. 6.Washington University School of MedicineSt. LouisUSA
  7. 7.Newark Beth Israel Medical CenterNewarkUSA
  8. 8.The University of Alabama at BirminghamBirminghamUSA
  9. 9.DuPont Hospital for ChildrenWilmingtonUSA
  10. 10.Department of Pediatrics, University of Cincinnati College of MedicineCincinnati Children’s Hospital Medical Center and Cincinnati Children’s Hospital Research FoundationCincinnatiUSA
  11. 11.Genomics of Pediatric SIRS/Septic Shock InvestigatorsCincinnatiUSA

Personalised recommendations