Advertisement

Molecular Medicine

, Volume 13, Issue 9–10, pp 471–479 | Cite as

Induction of Tolerance to Human Arylsulfatase A in a Mouse Model of Metachromatic Leukodystrophy

  • Ulrich Matzner
  • Frank Matthes
  • Eva Herbst
  • Renate Lüllmann-Rauch
  • Zsuzsanna Callaerts-Vegh
  • Rudi D’Hooge
  • Cecilia Weigelt
  • Carl Eistrup
  • Jens Fogh
  • Volkmar Gieselmann
Research Article

Abstract

A deficiency of arylsulfatase A (ASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disorder characterized by accumulation of sulfatide, a severe neurological phenotype and early death. The efficacy of enzyme replacement therapy (ERT) has previously been determined in ASA knockout (ASA−/−) mice representing the only available animal model for MLD. Repeated intravenous injection of human ASA (hASA) improved the nervous system pathology and function, but also elicited a progressive humoral immune response leading to treatment resistance, anaphylactic reactions, and high mortality. In contrast to ASA−/− mice, most MLD patients express mutant hASA which may entail immunological tolerance to substituted wildtype hASA and thus protect from immunological complications. To test this notion, a cysteine-to-serine substitution was introduced into the active site of the hASA and the resulting inactive hASA-C69S variant was constitutively expressed in ASA−/− mice. Mice with sub-to supranormal levels of mutant hASA expression were analyzed. All mice, including those showing transgene expression below the limit of detection, were immunologically unresponsive to injected hASA. More than 100-fold overexpression did not induce an overt new phenotype except occasional intralysosomal deposition of minor amounts of glycogen in hepatocytes. Furthermore, long-term, low-dose ERT reduced sulfatide storage in peripheral tissues and the central nervous system indicating that high levels of extracellular mutant hASA do not prevent cellular uptake and lysosomal targeting of substituted wildtype hASA. Due to the tolerance to hASA and maintenance of the MLD-like phenotype, the novel transgenic strain may be particularly advantageous to assess the benefit and risk of long-term ERT.

Notes

Acknowledgments

The authors thank Dagmar Niemeier for excellent technical assistance and William Sly (St. Louis, MO, USA) for providing the plasmid pTVC. This work was supported by the European Leukodystrophy Association, ELA.

References

  1. 1.
    von Figura K, Gieselmann V, Jaeken J. (2001) Metachromatic leukodystrophy. In Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B. (eds.). The Metabolic and Molecular Bases of Inherited Disease. Mc Graw-Hill. New York, USA. pp. 3695–724.Google Scholar
  2. 2.
    Hess B et al. (1996) Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc. Natl. Acad. Sci. USA. 93:14821–6.CrossRefGoogle Scholar
  3. 3.
    Sevin C, Aubourg P, Cartier N. (2007) Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J. Inherit. Metab. Dis. 30:175–83.CrossRefGoogle Scholar
  4. 4.
    Polten A, Fluharty AL, Fluharty CB, Kappler J von Figura K, Gieselmann V. (1991) Molecular basis of different forms of metachromatic leukodystrophy. N. Engl. J. Med. 324:18–22.CrossRefGoogle Scholar
  5. 5.
    Kyewski B, Klein L. (2006) A central role for central tolerance. Annu. Rev. Immunol. 24:571–606.CrossRefGoogle Scholar
  6. 6.
    Matzner U et al. (2005) Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum. Mol. Genet. 14:1139–52.CrossRefGoogle Scholar
  7. 7.
    Brooks DA. (1999) Immune response to enzyme replacement therapy in lysosomal storage disorder patients and animal models. Mol. Genet. Metab. 68: 268–75.CrossRefGoogle Scholar
  8. 8.
    Brooks DA, Kakavanos R, Hopwood JJ. (2003) Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder. Trends Mol. Med. 9:450–3.CrossRefGoogle Scholar
  9. 9.
    Sly WS et al. (2001) Active site mutant transgene confers tolerance to human beta-glucuronidase without affecting the phenotype of MPS VII mice. Proc. Natl. Acad. Sci. U. S. A. 98:2205–10.CrossRefGoogle Scholar
  10. 10.
    Tomatsu S et al. (2003) Production of MPS VII mouse (Gus(tm(hE540A× mE536A)Sly)) doubly tolerant to human and mouse beta-glucuronidase. Hum. Mol. Genet. 12: 961–73.CrossRefGoogle Scholar
  11. 11.
    Tomatsu S et al. (2005) Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum. Mol. Genet. 14: 3321–35.CrossRefGoogle Scholar
  12. 12.
    Matzner U, Habetha M, Gieselmann V. (2000) Retrovirally expressed human arylsulfatase A corrects the metabolic defect of arylsulfatase A-deficient mouse cells. Gene Ther. 7:805–12.CrossRefGoogle Scholar
  13. 13.
    Baum H, Dodgson KS, Spencer B. (1959) The assay of arylsulphatases A and B in human urine. Clin. Chim. Acta. 4: 453–5.CrossRefGoogle Scholar
  14. 14.
    Matzner U, Harzer K, Learish RD, Barranger JA, Gieselmann V. (2000) Long-term expression and transfer of arylsulfatase A into brain of arylsulfatase A-deficient mice transplanted with bone marrow expressing the arylsulfatase A cDNA from a retroviral vector. Gene Ther. 7:1250–7.CrossRefGoogle Scholar
  15. 15.
    Stein C et al. (1989) Cloning and expression of human arylsulfatase A. J. Biol. Chem. 264:1252–9.PubMedGoogle Scholar
  16. 16.
    Poeppel P, Habetha M, Marcao A, Bussow H, Berna L, Gieselmann V. (2005) Missense mutations as a cause of metachromatic leukodystrophy. Degradation of arylsulfatase A in the endoplasmic reticulum. FEBS J. 272:1179–88.CrossRefGoogle Scholar
  17. 17.
    Klein D, Bussow H, Fewou SN, Gieselmann V. (2005) Exocytosis of storage material in a lysosomal disorder. Biochem. Biophys. Res. Commun. 327:663–7.CrossRefGoogle Scholar
  18. 18.
    D’Hooge R, Van Dam D, Franck F, Gieselmann V, De Deyn PP. (2001) Hyperactivity, neuromotor defects, and impaired learning and memory in a mouse model for metachromatic leukodystrophy. Brain Res. 907:35–43.CrossRefGoogle Scholar
  19. 19.
    Matzner U et al. (2002) Bone marrow stem cell-based gene transfer in a mouse model for metachromatic leukodystrophy: effects on visceral and nervous system disease manifestations. Gene Ther. 9:53–63.CrossRefGoogle Scholar
  20. 20.
    Dierks T, Schmidt B, von Figura K. (1997) Conversion of cysteine to formylglycine: A protein modification in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 94:11963–8.CrossRefGoogle Scholar
  21. 21.
    Wittke D, Hartmann D, Gieselmann V, Lullmann-Rauch R. (2004) Lysosomal sulfatide storage in the brain of arylsulfatase A-deficient mice: cellular alterations and topographic distribution. Acta Neuropathol. (Berl). 108:261–71.CrossRefGoogle Scholar
  22. 22.
    Lullmann-Rauch R, Matzner U, Franken S, Hartmann D, Gieselmann V. (2001) Lysosomal sulfoglycolipid storage in the kidneys of mice deficient for arylsulfatase A (ASA) and of double-knockout mice deficient for ASA and galactosylceramide synthase. Histochem. Cell Biol. 116: 161–9.PubMedGoogle Scholar
  23. 23.
    Matzner U, Gieselmann V. (2005) Gene therapy of metachromatic leukodystrophy. Expert Opin. Biol. Ther. 5:55–65.CrossRefGoogle Scholar
  24. 24.
    Hirschhorn R, Reusser AJ. (2000) Glycogen storage disease type II. In Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds.). The Metabolic and Molecular Bases of Inherited Disease. Mc Graw-Hill. New York, USA. pp. 3389–420.Google Scholar
  25. 25.
    Raben N et al. (2003) Induction of tolerance to a recombinant human enzyme, acid alpha-glucosidase, in enzyme deficient knockout mice. Transgenic Res. 12:171–8.CrossRefGoogle Scholar
  26. 26.
    Kreysing J et al. (1994) Structure of the mouse arylsulfatase A gene and cDNA. Genomics. 19: 249–56.CrossRefGoogle Scholar
  27. 27.
    Lee WC et al. (2005) Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J. 19:1549–51.CrossRefGoogle Scholar
  28. 28.
    Roces DP et al. (2004) Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: a preclinical animal study. Hum. Mol. Genet. 13: 1979–88.CrossRefGoogle Scholar
  29. 29.
    Dunder U et al. (2000) Enzyme replacement therapy in a mouse model of aspartylglycosaminuria. FASEB J. 14:361–7.CrossRefGoogle Scholar
  30. 30.
    Vogler C et al. (2005) Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc. Natl. Acad. Sci. U. S. A. 102:14777–82.CrossRefGoogle Scholar
  31. 31.
    Urayama A, Grubb JH, Sly WS, Banks WA. (2004) Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc. Natl. Acad. Sci. U. S. A. 101:12658–63.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Ulrich Matzner
    • 1
  • Frank Matthes
    • 1
  • Eva Herbst
    • 2
  • Renate Lüllmann-Rauch
    • 2
  • Zsuzsanna Callaerts-Vegh
    • 3
  • Rudi D’Hooge
    • 3
  • Cecilia Weigelt
    • 4
    • 5
  • Carl Eistrup
    • 4
    • 5
  • Jens Fogh
    • 4
    • 5
  • Volkmar Gieselmann
    • 1
  1. 1.Institut für Physiologische ChemieRheinische Friedrich-Wilhelms-UniversitätBonnGermany
  2. 2.Anatomisches InstitutChristian-Albrechts-UniversitätKielGermany
  3. 3.Laboratory of Biological Psychology, Department of PsychologyUniversity of LeuvenLeuvenBelgium
  4. 4.Zymenex A/SHillerødDenmark
  5. 5.LidingöSweden

Personalised recommendations