Molecular Medicine

, Volume 14, Issue 5–6, pp 301–308 | Cite as

Insulin Stimulates the Clonogenic Potential of Angiogenic Endothelial Progenitor Cells by IGF-1 Receptor-Dependent Signaling

  • Per M. Humpert
  • Zdenka Djuric
  • Ulf Zeuge
  • Dimitrios Oikonomou
  • Yuri Seregin
  • Klaus Laine
  • Volker Eckstein
  • Peter P. Nawroth
  • Angelika Bierhaus
Research Article


Endothelial progenitor cells (EPCs) have been shown to be involved in vascular regeneration and angiogenesis in experimental diabetes. Because insulin therapy mobilizes circulating progenitor cells, we studied the effects of insulin on outgrowth of EPCs from peripheral blood mononuclear cells of healthy volunteers and patients with type 2 diabetes. Insulin increased the formation of EPC colony-forming units in a dose-dependent manner, half-maximal at 1.5 nM and peaking at 15 nM. Inhibiting the insulin receptor with neutralizing antibodies or antisense oligonucleotides had no effect on EPC outgrowth.1 In contrast, targeting the human insulin-like growth factor 1 (IGF-1) receptor with neutralizing antibodies significantly suppressed insulin-induced outgrowth of EPCs from both healthy controls and patients with type 2 diabetes. This IGF-1 receptor-mediated insulin effect on EPC growth was at least in part dependent on MAP kinases2 and was abrogated when extracellular signal-regulated kinase 1/2 (Erk1/2) and protein kinase 38 (p38) activity was inhibited. To study the functional relevance of the observed insulin effects, we studied EPC-induced tube formation of bovine endothelial cells in vitro. Insulin-stimulated EPCs incorporated into the endothelial tubes and markedly enhanced tube formation. In conclusion, this is the first study showing an insulin-mediated activation of the IGF-1 receptor leading to an increased clonogenic and angiogenic potential of EPCs in vitro.



This study was partly supported by the Deutsche Diabetes Stiftung (PMH), the Manfred Lautenschläger Stiftung (PPN) and the Network Aging Research (NAR) (A.B./P.M.H.). The authors are grateful to Prof. G. Haensch, Institute for Immunology, University of Heidelberg, for support in FACS analysis.


  1. 1.
    Hill JM, et al. (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348:593–600.CrossRefPubMedGoogle Scholar
  2. 2.
    Werner N.T, et al. (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 353:999–1007.CrossRefPubMedGoogle Scholar
  3. 3.
    Asahara T, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–7.CrossRefGoogle Scholar
  4. 4.
    Fathke C, et al. (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22:812–22.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Assmus B, et al. (2002) Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106:3009–17.CrossRefGoogle Scholar
  6. 6.
    Tateishi-Yuyama E, et al. (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Humpert PM, Eichler H, Lammert A, Hammes HP, Nawroth PP, Bierhaus A. (2005) Adult vascular progenitor cells and tissue regeneration in metabolic syndrome. Vasa 34:73–8,80.CrossRefPubMedGoogle Scholar
  8. 8.
    Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest. 106:571–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC. (2003) CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J. Vasc. Res. 40:368–77.CrossRefPubMedGoogle Scholar
  10. 10.
    Stepanovic V, Awad O, Jiao C, Dunnwald M, Schatteman GC. (2003) Leprdb diabetic mouse bone marrow cells inhibit skin wound vascularization but promote wound healing. Circ. Res. 92:1247–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Humpert PM, et al. (2005) Locally applied mononuclear bone marrow cells restore angiogenesis and promote wound healing in a type 2 diabetic patient. Exp. Clin. Endocrinol. Diabetes 113:538–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. (2001) CD34-blood-derived human endothelial cell progenitors. Stem Cells 19:304–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Peichev M, et al. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–8.Google Scholar
  14. 14.
    Rehman J, Li J, Orschell CM, March KL. (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Ingram DA, Caplice NM, Yoder MC. (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Loomans CJ, et al. (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Tepper OM, et al. (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Humpert PM, et al. (2005) SDF-1 genotype influences insulin-dependent mobilization of adult progenitor cells in type 2 diabetes. Diabetes Care 28:934–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Pistrosch F, et al. (2005) PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis 183:163–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Dimmeler S, et al. (2001) HMG-CoAreductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108:391–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D. (2005) Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45:526–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Kurtzhals P, et al. (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005.CrossRefPubMedGoogle Scholar
  23. 23.
    Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J. Biol. Chem. 277:39684–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Nitert MD, Chisalita SI, Olsson K, Bornfeldt KE, Arnqvist HJ. (2005) IGF-I/insulin hybrid receptors in human endothelial cells. Mol. Cell. Endocrinol. 229:31–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Li G, Barrett EJ, Wang H, Chai W, Liu Z. (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ingram DA, et al. (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Pelosi E, et al. (2002) Identification of the hemangioblast in postnatal life. Blood 100:3203–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Bierhaus A, et al. (1997) Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 96:2262–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Bierhaus A, et al. (2003) A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl. Acad. Sci. U. S. A. 100:1920–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kjeldsen T, et al. (1991) The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site. Proc. Natl. Acad. Sci. U. S. A. 88:4404–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Reaven GM, Bernstein R, Davis B, Olefsky JM. (1976) Nonketotic diabetes mellitus: insulin deficiency or insulin resistance? Am. J. Med. 60:80–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Gennaro WD, Van Norman JD. (1975) Quantitation of free, total, and antibody-bound insulin in insulin-treated diabetics. Clin. Chem. 21:873–9.PubMedGoogle Scholar
  33. 33.
    Hedman CA, Lindstrom T, Arnqvist HJ. (2001) Direct comparison of insulin lispro and aspart shows small differences in plasma insulin profiles after subcutaneous injection in type 1 diabetes. Diabetes Care 24:1120–1.CrossRefPubMedGoogle Scholar
  34. 34.
    Kasuga M, Kahn CR, Hedo JA, Van Obberghen E, Yamada KM. (1981) Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradation. Proc. Natl. Acad. Sci. U. S. A. 78:6917–21.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reed BC, Lane MD. (1980) Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. U. S. A. 77:285–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Thum T, et al. (2007) Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulinlike growth-factor-1. Circ. Res. 100:434–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Devin JK, et al. (2007) Low-dose growth hormone administration mobilizes endothelial progenitor cells in healthy adults. Growth Horm. IGF Res. Dec 29 [Epub ahead of print].Google Scholar
  38. 38.
    Kuemmerle JF, Murthy KS. (2001) Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: Gbetagamma-dependent mitogen-activated protein kinase activation and growth. J. Biol. Chem. 276:7187–94.CrossRefPubMedGoogle Scholar
  39. 39.
    Luttrell LM, van Biesen T, Hawes BE, Koch WJ, Touhara K, Lefkowitz RJ. (1995) G beta gamma subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J. Biol. Chem. 270:16495–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Seeger FH, et al. (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111:1184–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Uddin S, Ah-Kang J, Ulaszek J, Mahmud D, Wickrema A. (2004) Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells. Proc. Natl. Acad. Sci. U. S. A. 101:147–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Rausch O, Marshall CJ. (1999) Cooperation of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways during granulocyte colony-stimulating factor-induced hemopoietic cell proliferation. J. Biol. Chem. 274:4096–105.CrossRefPubMedGoogle Scholar
  43. 43.
    Kapur R, Chandra S, Cooper R, McCarthy J, Williams DA. (2002) Role of p38 and ERK MAP kinase in proliferation of erythroid progenitors in response to stimulation by soluble and membrane isoforms of stem cell factor. Blood 100:1287–93.PubMedGoogle Scholar
  44. 44.
    Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. (2002) p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J. Cell. Biol. 156:149–60.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    McGinn S, Saad S, Poronnik P, Pollock CA. (2003) High glucose-mediated effects on endothelial cell proliferation occur via p38 MAP kinase. Am. J. Physiol. Endocrinol. Metab. 285:E708–17.CrossRefPubMedGoogle Scholar
  46. 46.
    McMullen ME, Bryant PW, Glembotski CC, Vincent PA, Pumiglia KM. (2005) Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J. Biol. Chem. 280:20995–1003.CrossRefPubMedGoogle Scholar
  47. 47.
    Asahara T, et al. (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85:221–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Fadini GP, et al. (2007) Maternal insulin therapy increases fetal endothelial progenitor cells during diabetic pregnancy. Diabetes Care Dec 27 [Epub ahead of print].Google Scholar
  49. 49.
    Vehkavaara S, Yki-Jarvinen H. (2004) 3.5 years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 24:325–30.CrossRefPubMedGoogle Scholar
  50. 50.
    Rask-Madsen C, et al. (2001) Insulin therapy improves insulin-stimulated endothelial function in patients with type 2 diabetes and ischemic heart disease. Diabetes 50:2611–8.CrossRefPubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Per M. Humpert
    • 1
  • Zdenka Djuric
    • 1
  • Ulf Zeuge
    • 1
  • Dimitrios Oikonomou
    • 1
  • Yuri Seregin
    • 1
  • Klaus Laine
    • 1
  • Volker Eckstein
    • 2
  • Peter P. Nawroth
    • 1
  • Angelika Bierhaus
    • 1
  1. 1.Department of Medicine I and Clinical ChemistryUniversity Clinics HeidelbergHeidelbergGermany
  2. 2.Department of Medicine VUniversity Clinics HeidelbergHeidelbergGermany

Personalised recommendations