Molecular Medicine

, Volume 13, Issue 7–8, pp 344–349 | Cite as

Zinc Inhibits Astrocyte Glutamate Uptake by Activation of Poly(ADP-ribose) Polymerase-1

  • Sang Won Suh
  • Koji Aoyama
  • Conrad C. Alano
  • Christopher M. Anderson
  • Aaron M. Hamby
  • Raymond A. Swanson


Several processes by which astrocytes protect neurons during ischemia are now well established. However, less is known about how neurons themselves may influence these processes. Neurons release zinc (Zn2+) from presynaptic terminals during ischemia, seizure, head trauma, and hypoglycemia, and modulate postsynaptic neuronal function. Peak extracellular zinc may reach concentrations as high as 400 µM. Excessive levels of free, ionic zinc can initiate DNA damage and the subsequent activation of poly(ADP-ribose) polymerase 1 (PARP-1), which in turn lead to NAD+ and ATP depletion when DNA damage is extensive. In this study, cultured cortical astrocytes were used to explore the effects of zinc on astrocyte glutamate uptake, an energy-dependent process that is critical for neuron survival. Astrocytes incubated with 100 or 400 µM of zinc for 30 min showed significant decreases in ATP levels and glutamate uptake capacity. These changes were prevented by the PARP inhibitors benzamide or DPQ (3,4-dihydro-5-(4-(1-piperidinyl)butoxyl)-1(2H)-isoquinolinone) or PARP-1 gene deletion (PARP-1 KO). These findings suggest that release of Zn2+ from neurons during brain insults could induce PARP-1 activation in astrocytes, leading to impaired glutamate uptake and exacerbation of neuronal injury.



This work was supported by the Department of Veterans Affairs and by the National Institutes of Health grant RO1 NS41421 (R.A.S.). We thank Elizabeth Gum, Jennifer Bergher, and Jillian Silva for expert technical assistance.


  1. 1.
    Chen Y, Swanson RA. (2003) Astrocytes and brain injury. J. Cereb. Blood Flow Metab. 23:137–49.CrossRefGoogle Scholar
  2. 2.
    Swanson RA, Ying W, Kauppinen TM. (2004) astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 4:193–205.CrossRefGoogle Scholar
  3. 3.
    Choi DW. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–34.CrossRefGoogle Scholar
  4. 4.
    Obrenovitch TP. (1995) The ischaemic penumbra: twenty years on. Cerebrovasc. Brain Metab. Rev. 7:297–323.PubMedGoogle Scholar
  5. 5.
    Wahl F, Obrenovitch TP, Hardy AM, Plotkine M, Boulu R, Symon L. (1994) Extracellular glutamate during focal cerebral ischaemia in rats: time course and calcium dependency. J. Neurochem. 63:1003–11.CrossRefGoogle Scholar
  6. 6.
    Rao VL, Bowen KK, Dempsey RJ. (2001) Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem. Res. 26:497–502.CrossRefGoogle Scholar
  7. 7.
    Anderson CM, Swanson RA. (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14.CrossRefGoogle Scholar
  8. 8.
    Danbolt NC. (2001) Glutamate uptake. Prog. Neurobiol. 65:1–105.CrossRefGoogle Scholar
  9. 9.
    D’Amours D, Desnoyers S, D’Silva I, Poirier GG. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342:249–68.CrossRefGoogle Scholar
  10. 10.
    Pieper AA, Verma A, Zhang J, Snyder SH. (1999) Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol. Sci. 20:171–81.CrossRefGoogle Scholar
  11. 11.
    Burzio LO, Riquelme PT, Koide SS. (1979) ADP ribosylation of rat liver nucleosomal core histones. J. Biol. Chem. 254:3029–37.PubMedGoogle Scholar
  12. 12.
    Zahradka P, Ebisuzaki K. (1982) Ashuttle mechanism for DNA-protein interactions. The regulation of poly(ADP-ribose) polymerase. Eur. J. Biochem. 127:579–85.CrossRefGoogle Scholar
  13. 13.
    Gaal JC, Pearson CK. (1985) Eukaryotic nuclear ADP-ribosylation reactions. Biochem. J 230:1–18.CrossRefGoogle Scholar
  14. 14.
    Berger NA. (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Rad. Res. 101:4–15.CrossRefGoogle Scholar
  15. 15.
    Sheline CT, Behrens MM, Choi DW. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J. Neurosci. 20:3139–46.CrossRefGoogle Scholar
  16. 16.
    Kim YH, Koh JY. (2002) The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp. Neurol. 177:407–18.CrossRefGoogle Scholar
  17. 17.
    Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. U. S. A. 96:2414–9.CrossRefGoogle Scholar
  18. 18.
    Weiss JH, Sensi SL, Koh JY. (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21:395–401.CrossRefGoogle Scholar
  19. 19.
    Sheline CT, Wang H, Cai AL, Dawson VL, Choi DW. (2003) Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxicity. Eur. J. Neurosci. 18:1402–9.CrossRefGoogle Scholar
  20. 20.
    Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH. (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 109:247–52.CrossRefGoogle Scholar
  21. 21.
    Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–6.CrossRefGoogle Scholar
  22. 22.
    Calderone A, Jover T, Mashiko T, et al. (2004) Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J. Neurosci. 24:9903–13.CrossRefGoogle Scholar
  23. 23.
    Frederickson CJ, Hernandez MD, McGinty JF. (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res. 480:317–21.CrossRefGoogle Scholar
  24. 24.
    Suh SW, Thompson RB, Frederickson CJ. (2001) Loss of vesicular zinc and appearance of perikaryal zinc after seizures induced by pilocarpine. Neuroreport 12:1523–5.CrossRefGoogle Scholar
  25. 25.
    Suh SW, Chen JW, Motamedi M, et al. (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 852:268–73.CrossRefGoogle Scholar
  26. 26.
    Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA. (2004) Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol. Dis. 16:538–45.CrossRefGoogle Scholar
  27. 27.
    Suh SW, Frederickson CJ, Danscher G. (2006) Neurotoxic zinc translocation into hippocampal neurons is inhibited by hypothermia and is aggravated by hyperthermia after traumatic brain injury in rats. J. Cereb. Blood Flow Metab. 26:161–9.CrossRefGoogle Scholar
  28. 28.
    Howell GA, Welch MG, Frederickson CJ. (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–8.CrossRefGoogle Scholar
  29. 29.
    Assaf SY, Chung SH. (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–6.CrossRefGoogle Scholar
  30. 30.
    Spiridon M, Kamm D, Billups B, Mobbs P, Attwell D. (1998) Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J. Physiol. (Lond.) 506:363–76.CrossRefGoogle Scholar
  31. 31.
    Frederickson CJ, Koh JY, Bush AI. (2005) The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6:449–62.CrossRefGoogle Scholar
  32. 32.
    Yokoyama M, Koh J, Choi DW. (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci. Lett. 71:351–5.CrossRefGoogle Scholar
  33. 33.
    Frederickson CJ, Giblin LJ, Krezel A, et al. (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 198:285–93.CrossRefGoogle Scholar
  34. 34.
    Swanson RA. (1992) Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci. Lett. 147:143–6.CrossRefGoogle Scholar
  35. 35.
    Ying W, Swanson RA. (2000) The poly(ADP-ribose) glycohydrolase inhibitor gallotannin blocks oxidative astrocyte death. Neuroreport 11:1385–8.CrossRefGoogle Scholar
  36. 36.
    Wang ZQ, Stingl L, Morrison C, et al. (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11:2347–58.CrossRefGoogle Scholar
  37. 37.
    Alano CC, Ying W, Swanson RA. (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J. Biol. Chem. 279:18895–902.CrossRefGoogle Scholar
  38. 38.
    Swanson RA, Farrell K, Simon RP. (1995) Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J. Cereb. Blood Flow Metab. 15:417–24.CrossRefGoogle Scholar
  39. 39.
    Koh JY, Choi DW. (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Methods 20:83–90.CrossRefGoogle Scholar
  40. 40.
    Gabrielsson B, Robson T, Norris D, Chung SH. (1986) Effects of divalent metal ions on the uptake of glutamate and GABA from synaptosomal fractions. Brain Res. 384:218–23.CrossRefGoogle Scholar
  41. 41.
    Frederickson CJ, Suh SW, Koh JY, et al. (2002) Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J. Histochem. Cytochem. 50:1659–62.CrossRefGoogle Scholar
  42. 42.
    Vandenberg RJ, Mitrovic AD, Johnston GA. (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol. Pharmacol. 54:189–96.CrossRefGoogle Scholar
  43. 43.
    Ying W, Alano CC, Garnier P, Swanson RA. (2005) NAD+ as a metabolic link between DNA damage and cell death. J. Neurosci. Res. 79:216–23.CrossRefGoogle Scholar
  44. 44.
    Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. (2004) Alkylating DNAdamage stimulates a regulated form of necrotic cell death. Genes Dev. 18:1272–82.CrossRefGoogle Scholar
  45. 45.
    Zhang J, Dawson VL, Dawson TM, Snyder SH. (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–9.CrossRefGoogle Scholar
  46. 46.
    Noh KM, Koh JY. (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci. 20:RC111.CrossRefGoogle Scholar
  47. 47.
    Dawson VL. (1995) Nitric oxide: role in neurotoxicity. Clin. Exp. Pharmacol. Physiol. 22:305–8.CrossRefGoogle Scholar
  48. 48.
    Swanson RA, Sharp FR. (1992) Zinc toxicity and induction of the 72 kD heat shock protein in primary astrocyte culture. Glia 6:198–205.CrossRefGoogle Scholar
  49. 49.
    Lee JY, Cole TB, Palmiter RD, Koh JY. (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20:RC79.CrossRefGoogle Scholar
  50. 50.
    Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ. (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75:1878–88.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Sang Won Suh
    • 1
    • 2
  • Koji Aoyama
    • 1
    • 2
  • Conrad C. Alano
    • 1
    • 2
  • Christopher M. Anderson
    • 1
    • 2
  • Aaron M. Hamby
    • 1
    • 2
  • Raymond A. Swanson
    • 1
    • 2
  1. 1.Department of Neurology (127)University of CaliforniaSan FranciscoUSA
  2. 2.Department of Neurology (127)Veterans Affairs Medical CenterSan FranciscoUSA

Personalised recommendations